
International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

33 | Page

Cloud Data Management in Multi Tenant Architecture

Udhaya Chandrika Shanmugam
Research and Development Centre, Bharathiar University, Coimbatore.

Abstract: Cloud Data management in multi tenant architecture, needs Data Sharding, Scaling, filtering and

applying data encryption to share data for a particular client. Tenants are groups of assessors who need a shared

instance in Multitenant Architectural Environmental Application. Every tenant's data in cloud can be shared

with proper configuration management, user management and tenant functional properties. A cloud data in multi

tenant cloud architecture is sharing a single cloud instance data to multiple tenants. Sharding is possibly very

transparent key technique to provide splited data to the tenant in Multitenant Application and accessing correct

shards information. Filtering and Encryptions are common practices can be applied in Cloud Data Management

for best performance in Multitenant Cloud Application Architecture.
Keywords: Data Scaling, Data Filtering, Encrypting.

Introduction

Managing cloud data by:

1. Cloud Data Sharding and Scaling in Multi Tenant Applications

2. Filtering Data using Tenant View filters in cloud databases.

3. Applying Encryptions for data Security while handling multiple Tenants.

Cloud Data Sharding and Scaling in Multi Tenant Applications

Cloud Data Sharding in detail: A Saas product which is developed for managing cloud data instance in

multitenant environment, it should scalable without compromising the performance. Also it should be reliable.

And data should be available to required tenant. The intention of building large scale cloud applications are to

handle and serve multiple tenant requirements in cloud architecture. When the number tenant keep increase the

performance and lookup for filtered data availability. Cloud Data Sharding through different Types of

Method are:

Approach One: Managing Two different databases one for Tenants data storages and another one for

Application Data.

Shared Databases

International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

34 | Page

Approach Two: Here tenant requesting for complete isolation of their secured data in the Database can be

achieved by creating separate instance for the tenant can be created. Other tenant’s data will reside in common

database and transitions will happen in instance of db created for secured tenant.

Tenant Based Database

Approach Three: Separating the tenants by separate schema modules. It gives high level of security, isolation

and complete freedom to access the protected data in multiple tenant environments.

Schema Based Database

Approach Four: A single database can be shared to multiple tenants depends on the volume of data

requirements, and sharing common data for large number of tenants.

Scalable Database with Different Shared Schemas

Approach Five: Here different debases can be considered for different modules. Tenants can be access required

module in particular database. In this implementation vertical partitioning is plays big role.

Module based Databases

International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

35 | Page

Approach Six: Applying horizontal and vertical partitioning in Databases, based on the required modules which

are stored in different databases. This data Sharding can be portioned by Tenant Identity.

Module based Shared Database and Shared Schemas

Filtering Data using Tenant View filters in cloud databases.

MS SQL Server recommends Tenant View Filtering in Multitenancy.

CREATE VIEW TenantAsEmployee AS

Select * from Employee WHERE TenID = cUser_cID()

The GROUPING in SQL will gather all of the rows together that contain data in the specified column(s) and

will allow aggregate functions to be performed on the one or more columns. SQL Grouping allows

accessing the objects in the group to create different group with different schema of objects

GRANT CONNECT TO TenantOne;

GRANT RESOURCE TO TenantOne;

GRANT GROUP TO TenantOne;

Now that the group is created as TenantOne, a user with permissions of create tables for other Tenants could

create a table in the new schema by specifying the owner on the

CREATE TABLE command:

CREATE TABLE TenantOne.Employees

(

 EmployeeID INTEGER NOT NULL,

 ManagerID INTEGER NULL,

 Surname CHAR(20) NOT NULL,

 GivenName CHAR(20) NOT NULL,

 ST_DeptID INTEGER NOT NULL,

 Street CHAR(30) NOT NULL,

International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

36 | Page

 City CHAR(20) NOT NULL,

 State CHAR(16) NULL,

 Country CHAR(16) NULL,

 CONSTRAINT EmployeesKey PRIMARY KEY (EmployeeID)

);

Just a few more commands to allow a given user to access the new table:

GRANT SELECT, INSERT, DELETE, UPDATE ON TenantOne.Employees TO TenantOne;

GRANT, SELECT, INSERT, DELETE, UPDATE commands can be used in TenantOne.Employees TO

TenantOne Group.

GRANT CONNECT TO TUser IDENTIFIED BY Tpass;

GRANT MEMBERSHIP IN GROUP TenantOne TO TUser;

 CONNECT AS TUser IDENTIFIED BY Tpass;

 SELECT * FROM TenantOne;

Table VIEW creates Virtual Table to manipulate SQL queries and commands.

CREATE TABLE "INFRACTUREDB_TENANT".UserTenantMap (

TenantId INTEGER NOT NULL,

ActiveTenants CHAR(255) NOT NULL,

CONSTRAINT "UserTenantMapKey" PRIMARY KEY ("TenandId", "ActiveTenants")

);

Next, the base table is defined with a TenantIdcolumn, and a VIEW is defined, joining with the UserTenantMap

table:

CREATE TABLE "INFRACTUREDB_TENANT"."TenantModules" (

 "TenandId" INTEGER NOT NULL DEFAULT (CAST('1' AS INTEGER)),

 "ST_DeptID" INTEGER NOT NULL,

 "ST_DeptName" CHAR(40) NOT NULL,

 "ST_DeptHeadID" INTEGER NULL,

 CONSTRAINT " TenantModules Key" PRIMARY KEY ("TenandId","ST_DeptID"));

CREATE VIEW "TENANTVIEW"."SharedTableDept" (

 "ST_DeptID",

 "ST_DeptName",

 "ST_DeptHeadID") AS SELECT

 "ST_DeptID",

 "ST_DeptName",

 "ST_DeptHeadID"

FROM "INFRACTUREDB_TENANT"."TenantModules"

JOIN "INFRACTUREDB_TENANT"."UserTenantMap"

ON "TenantModules"."TenandId" = "UserTenantMap"."TenandId"

WHERE

"UserTenantMap"."ActiveTenants" = CURRENT USER;

The application can be coded to simply SELECT from the SharedTableDept table as before. Inserts or Deletes

can be handled using an INSTEAD OF trigger defined on the view. INSTEAD OF triggers allow alternate

actions to be performed, rather than the DML that caused the trigger to fire. Read more about SQL Anywhere’s

implementation of INSTEAD OF triggers here. Here is an INSTEAD OF trigger to handle inserts on the

SharedTableDept VIEW:

International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

37 | Page

 CREATE OR REPLACE PROCEDURE "INFRACTUREDB_TENANT"."InsertST_DeptProc"

(IN new_ST_DeptID INTEGER,

 IN new_ST_DeptName CHAR(40),

 IN new_ST_DeptHeadID INTEGER,

 IN inserting User CHAR(255)

)

BEGIN

 DECLARE new_TenandId INTEGER;

 SELECT TenantId INTO new_TenandId

 FROM "INFRACTUREDB_TENANT"."UserTenantMap"

 WHERE ActiveTenants = insertingUser;

 INSERT INTO "INFRACTUREDB_TENANT"."TenantModules" (

 TenandId,

 ST_DeptID,

 ST_DeptName,

 ST_DeptHeadID)

 VALUES (

 new_TenandId,

 new_ST_DeptID,

 new_ST_DeptName,

 new_ST_DeptHeadID

);

END

;

GRANT EXECUTE ON "INFRACTUREDB_TENANT"."InsertST_DeptProc" TO "TENANTVIEW";

CREATE OR REPLACE TRIGGER Insert_SharedTableDept

INSTEAD OF INSERT ON "TenantView"."SharedTableDept"

REFERENCING NEW AS new_row

FOR EACH ROW

BEGIN

 CALL "INFRACTUREDB_TENANT"."InsertST_DeptProc" (

 new_row.ST_DeptID,

 new_row.ST_DeptName,

 new_row.ST_DeptHeadID,

 CURRENT USER);

END

;

Tenant Data Encryption

An RSA public-key / private-key pair can be generated by the following steps:

1. Generate a pair of large, random primes p and q.

2. Compute the modulus n as n = pq.

3. Select an odd public exponent e between 3 and n-1 that is relatively prime to p-1 and q-1.

4. Compute the private exponent d from e, p and q.

5. Output (n, e) as the public key and (n, d) as the private key.

The encryption operation in the RSA cryptosystem is exponentiation to the e

th power

modulo n:

http://msdn.microsoft.com/en-us/library/aa479086.aspx#mlttntda_tde

International Journal of Latest Engineering Research and Applications

(IJLERA)
www.ijlera.com

Volume 1 – Issue 1 pp: 33-38

38 | Page

The input m is the message; the output c is the resulting cipher text. In practice, the message m is typically some

kind of appropriately formatted key to be shared. The actual message is encrypted with the shared key using a

traditional encryption algorithm. This construction makes it possible to encrypt a message of any length with

only one exponentiation. The decryption operation is exponentiation to the dth power modulo n:

The relationship between the exponents e and d ensures that encryption and decryption are inverses, so that the

decryption operation recovers the original message m. Without the private key (n, d) (or equivalently the prime

factors p and q), it’s difficult to recover m from c. Consequently, n and e can be made public without

compromising security, which is the basic requirement for a public-key cryptosystem.

Conclusion
In this paper we discussed about Scaling and Sharding to meet the changing demands of cloud data with highly-

available, high-performance services in Multitenant Architecture. Typically, data filtering in multi tenant

environment in cloud application will involve taking out information for a particular tenant. Also Discussed

about encrypting of cloud data in Multitenant application and securing data in cloud data management using

RSA algorithm.

