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Abstract: A fast and energy-efficient floating point unit is always needed in electronics industry especially in 

DSP, image processing and as arithmetic unit in microprocessors. Many numerically intensive applications 

require rapid execution of arithmetic operations. Arithmetic circuits form an important class of circuits in digital 

systems. With the remarkable progress in the very large scale integration (VLSI) circuit technology, many 

complex circuits, unthinkable yesterday have become easily realizable today. Algorithms that seemed 

impossible to implement now have attractive implementation possibilities for the future. This means that not 

only the conventional computer arithmetic methods, but also the unconventional ones are worth investigation in 

new designs. 

We present the design of an IEEE 754 single precision floating point multiplier. Verilog HDL is used to 

implement this design. Floating point numbers are one possible way of representing real numbers in binary 

format; the IEEE 754 standard presents two different floating point formats, Binary interchange format and 

Decimal interchange format. Multiplying floating point numbers is a critical requirement for applications 

involving large dynamic range. In this project we focus on single precision normalized binary interchange 

format. The multiplier design handles the overflow and underflow cases. Rounding is  to give more precision 

when using the multiplier in a Multiply and Accumulate (MAC) unit. 

Keywords: MAC: Multiply and Accumulate. 

 

I. INTRODUCTION  
 Many applications require numbers that aren‟t integers. There are a number of ways that non-integers 

can be represented. Adding two such numbers can be done with an integer add, whereas multiplication requires 

some extra shifting. There are various way to represent the number systems. However, only one non-integer 

representation has gained widespread use, and that is floating point. In computing, floating point is a method of 

representing an approximation of a real number in a way that can support a trade-off between range and 

precision. A number is, in general, represented approximately to a fixed number of significand 

digits (the significand) and scaled using an exponent; the base for the scaling is normally two, ten, or sixteen. A 

number that can be represented exactly is of the following form: 

 

. 

For example: 

 
  

          The term floating point refers to the fact that a number's radix point (decimal point, or, more commonly in 

computers, binary point) can "float"; that is, it can be placed anywhere relative to the significand digits of the 

number. This position is indicated as the exponent component, and thus the floating-point representation can be 

thought of as a kind of scientific notation. 

 

II. FLOATING POINT MULTIPLICATION ALGORITHM: 
As stated in the introduction, normalized floating point numbers have the form of Z= (-1S) * 2 (E - 

Bias) * (1.M). To multiply two floating point numbers the following is done: 

 

 

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Trade-off
http://en.wikipedia.org/wiki/Accuracy_and_precision
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significand
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Radix_point
http://en.wikipedia.org/wiki/Scientific_notation
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1. Multiplying the significand; i.e. (1.M1*1.M2) 

2. Placing the decimal point in the result 

3. Adding the exponents; i.e. (E1 + E2 – Bias) 

4. Obtaing the sign; i.e. s1 xor s2 

5. Normalizing the result; i.e. obtaining 1 at the MSB of the results‟ significand 

6. Rounding the result to fit in the available bits 

7. Checking for underflow/overflow occurrence. 

 

Consider a floating point representation similar to the IEEE 754 single precision floating point format, 

but with a reduced „1‟ bit for normalized numbers: A = 0 10000100 0100 = 40, B = 1 10000001 1110 = -7.5 

 

To multiply A and B 

1. Multiply significand: 

 

 
2. Place the decimal point:                       10.01011000 

3.  Add exponents: 

 
 

 The exponent representing the two numbers is already shifted/biased by the bias value (127) and is not 

the true exponent; i.e. EA = EA-true + bias and EB = EB-true + bias 

And 

EA + EB = EA-true + EB-true + 2 bias 

 So we should subtract the bias from the resultant exponent otherwise the bias will be added twice. 

 
 

 4. Obtain the sign bit and put the result together: 

            1 10000110 10.01011000 

5. Normalize the result so that there is a 1 just before the radix point (decimal point). Moving the radix point one 

place to the left increments the exponent by 1; moving one place to the right decrements the exponent by 1. 

 

1 10000110 10.01011000 (before normalizing) 

1 10000111 1.001011000 (normalized) 

 

The result is (without the hidden bit): 

1 10000111 00101100 

6. The mantissa bits are more than 4 bits (mantissa available bits); rounding is needed. If we applied the 

truncation rounding mode then the stored value is: 

1 10000111 0010. 

 

Fig. Below shows the multiplier structure; Exponents addition, Significand multiplication, and Result‟s 

sign calculation are independent and are done in parallel. The significand multiplication is done on two 24 bit 

numbers and results in a 48 bit product, which we will call the intermediate product (IP). The IP is represented 

as (47 downto 0) and the decimal point is located between bits 46 and 45 in the IP. The following sections detail 

each block of the floating point multiplier. 



International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137 

 

Volume – 02, Issue – 11, November – 2017, PP – 01-07 

www.ijlera.com                           2017 IJLERA – All Right Reserved                               3 | Page 

 
Figure2.1  Floating point multiplier block diagram 

 

III. INDENTATIONS AND EQUATIONS  
3.1 Sign bit calculation: 

 Multiplying two numbers results in a negative sign number if one of the multiplied numbers is of a 

negative value. By the aid of a truth table we find that this can be obtained by XOR ing the sign of two inputs. 

 

3.1.2. Unsigned Adder (for exponent addition): 

This unsigned adder is responsible for adding the exponent of the first input to the exponent of the 

second input and subtracting the Bias (127) from the addition result (i.e. A_exponent + B_exponent - Bias). The 

result of this stage is called the intermediate exponent. The add operation is done on 8 bits, and there is no need 

for a quick result because most of the calculation time is spent in the significand multiplication process 

(multiplying 24 bits by 24 bits); thus we need a moderate exponent adder and a fast significand multiplier. 

An 8-bit ripple carry adder is used to add the two input exponents. As shown in Fig. 3 a ripple carry 

adder is a chain of cascaded full adders and one half adder; each full adder has three inputs (A, B, Ci) and two 

outputs (S, Co). The carry out (Co) of each adder is fed to the next full adder (i.e each carry bit "ripples" to the 

next full adder). 

 

 
Figure 3.1. Ripple Carry Adder 

 

The addition process produces an 8 bit sum (S7 to S0) and a carry bit (Co,7). These bits are 

concatenated to form a 9 bit addition result (S8 to S0) from which the Bias is subtracted. The Bias is subtracted 

using an array of ripple borrow subtractors. A normal subtractor has three inputs (minuend (S), subtrahend (T), 

Borrow in (Bi)) and two outputs (Difference (R), Borrow out (Bo)). The subtractor logic can be optimized if one 

of its inputs is a constant value which is our case, where the Bias is constant (127|10 = 001111111|2).  

 
Figure 3.2 . Ripple Borrow Subtractor 
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3.1.3. Unsigned Multiplier (for significand multiplication): 

This unit is responsible for multiplying the unsigned significand and placing the decimal point in the 

multiplication product. The result of significand multiplication will be called the intermediate product (IP). The 

unsigned significand multiplication is done on 24 bit. Multiplier performance should be taken into consideration 

so as not to affect the whole multiplier‟s performance. A 24x24 bit carry save multiplier architecture is used as it 

has a moderate speed with a simple architecture. In the carry save multiplier, the carry bits are passed diagonally 

downwards (i.e. the carry bit is propagated to the next stage). Partial products are made by ANDing the inputs 

together and passing them to the appropriate adder. 

 

Carry save multiplier has three main stages: 

1. The first stage is an array of half adders. 

2. The middle stages are arrays of full adders. The number of middle stages is equal to the significand 

size minus two. 

3. The last stage is an array of ripple carry adders. This stage is called the vector merging stage. The 

number of adders (Half adders and Full adders) in each stage is equal to the significand size minus 

one. For example, a 4x4 carry save multiplier is shown in Fig. 7 and it has the following stages: 

 The first stage consists of three half adders. 

 Two middle stages; each consists of three full adders. 

  The vector merging stage consists of one half adder and two full adders. 

 

The decimal point is between bits 45 and 46 in the significand multiplier result. The multiplication time 

taken by the carry save multiplier is determined by its critical path. The critical path starts at the AND gate of 

the first partial products (i.e. a1b0 and a0b1), passes through the carry logic of the first half adder and the carry 

logic of the first full adder of the middle stages, then passes through all the vector merging adders. The critical 

path is marked in bold in Fig 

 
Figure 3.3  4x4 bit Carry Save multiplier 

In Fig.3.3: 

1. Partial product: aibj = ai and bj 

2. HA: half adder 

3. FA: full adder 

 

3.1.4. Normalizer: 

The result of the significand multiplication (intermediate product) must be normalized to have a 

leading „1‟ just to the left of the decimal point (i.e. in the bit 46 in the intermediate product). Since the inputs are 

normalized numbers then the intermediate product has the leading one at bit 46 or 47  

1. If the leading one is at bit 46 (i.e. to the left of the decimal point) then the intermediate product is 

already a normalized number and no shift is needed. 

2. If the leading one is at bit 47 then the intermediate product is shifted to the right and the exponent is 

incremented by 1. 

3.2. Underflow /Overflow Detection: 

Overflow/underflow means that the result‟s exponent is too large/small to be represented in the 

exponent field. The exponent of the result must be 8 bits in size, and must be between 1 and 254 otherwise the 

value is not a normalized one. 
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An overflow may occur while adding the two exponents or during normalization. Overflow due to 

exponent addition may be compensated during subtraction of the bias; resulting in a normal output value 

(normal operation). An underflow may occur while subtracting the bias to form the intermediate exponent. If the 

intermediate exponent < 0 then it‟s an underflow that can never be compensated; if the intermediate exponent = 

0 then it‟s an underflow that may be compensated during normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes high and the result turns to ±Infinity (sign 

determined according to the sign of the floating point multiplier inputs). When an underflow occurs an 

underflow flag signal goes high and the result turns to ±Zero (sign determined according to the sign of the 

floating point multiplier inputs). Denormalized numbers are signaled to Zero with the appropriate sign 

calculated from the inputs and an underflow flag is raised. Assume that E1 and E2 are the exponents of the two 

numbers A and B respectively; the result‟s exponent is calculated by  

 

Eresult = E1 + E2 - 127 

 

 E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to 

381 (508-127); but for normalized numbers, Eresult can only have the values from 1 to 254. Table III 

summarizes the Eresult different values and the effect of normalization on it. 

 
Table 3.2.1 . Normalization Effect On Result‟s Exponent And Overflow/Underflow Detection 

 

IV. FIGURES AND TABLES 
4.1 Simulation output for two positive Floating numbers: 

 
Figure 4.1. simulation output for two positive Floating numbers 
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The simulation results for corresponding inputs are shown in Fig. The simulation is done using 

Modelsim 6.3f and for synthesis purpose Xilinx 14.3 software is used. 

Considering the random floating point numbers, 

Inputs:   a = 19.2; 

            b = 66.6; 

Output:                 result = 1278.72; 

Here we have taken two positive 32-bit Floating point numbers.  

A = 0 10000011 0011 = 19.2 

B = 0 10000101 0000 = 66.6 

The above figure shows the different result corresponding the two floating point multiplication regarding  

Sign_out_temp:             It represent the result of sign bit that is 0  0 = 0 

Exp_add_out_temp:      It represent the result of exponent bit that is  

 

10000011+10000101 = 100001000 

The exponent representing the two numbers is already shifted/biased by the bias value (127) and is not 

the true exponent; i.e. EA = EA-true + bias and EB = EB-true + bias And EA+ EB = EA-true + EB-true + 2 bias 

So we should subtract the bias from the resultant exponent otherwise the bias will be added twice. 

  100001000 

   - 01111111 

    10001001 

 

Mul_out_temp:  It represent the result of Mantissa bit 1.0011  X 1.0000 = 100110000 

 

Top_Multiplier_out_temp: It represents the overall the result of two floating point multiplier. That is a 

combination of Sign bit, Exponent and Mantissa result.  

0 10001001 00110000000000000000000 

   

4.2  simulation output for two Different Floating numbers: 

 
Figure 4.2 simulation output for two Different Floating numbers 

 

The simulation results for corresponding inputs are shown in Fig. The simulation is done using 

Modelsim 6.3f and for synthesis purpose Xilinx 14.3 software is used. 

Considering the different floating point numbers, 
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Inputs:   a = -19.2; 

            b = 66.6; 

Output:                 result = -1278.72; 

 

Here we have taken two different 32-bit Floating point numbers.  

A = 1 10000011 0011 = -19.2 

B = 0 10000101 0000 = 66.6 

The above figure shows the different result corresponding the two floating point multiplication regarding  

Sign_out_temp:             It represent the result of sign bit that is 1  0 = 1 

Exp_add_out_temp:      It represent the result of exponent bit that is  

 

10000011+10000101 = 100001000 

The exponent representing the two numbers is already shifted/biased by the bias value (127) and is not 

the true exponent; i.e. EA = EA-true + bias and EB = EB-true + bias And EA+ EB = EA-true + EB-true + 2 bias 

So we should subtract the bias from the resultant exponent otherwise the bias will be added twice. 

  100001000 

   - 01111111 

    10001001 

 

Mul_out_temp:  It represent the result of Mantissa bit 1.0011  X 1.0000 = 100110000 

 

Top_Multiplier_out_temp: It represents the overall the result of two floating point multiplier. That is a 

combination of Sign bit, Exponent and Mantissa result. 

 

1 10001001 00110000000000000000000 

 

V. CONCLUSION  
Single Precision Floating Point Multiplier unit has been designed to  fast adder and fast multipliers. 

IEEE 754 standard based floating point representation has been used. This is achived using  Verilog HDL. Many 

numerically intensive applications require rapid execution of arithmetic operations. Arithmetic circuits form an 

important class of circuits in digital systems. With the remarkable progress in the very large scale integration 

(VLSI) circuit technology, many complex circuits, unthinkable yesterday have become easily realizable today. 

Algorithms that seemed impossible to implement now have attractive implementation possibilities for the future. 
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