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Abstract: This paper contains a quadrature rule for double integrals of precision-7 has been constructed taking
two rules of precision-5.In adaptive environment the rule has been numerically experimented on different
integrals as well as it has been implemented to evaluate the line integral for any vector function through the
Green’s theorem. It has been found a good agreement to that of Clenshaw-Curtis five point rule. An error

analysis has also been made.
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1. Introduction

Since decade years so many researchers [2,7,10,11] have been working on the integral
b

1(£)=] f(s)s 11)

a
Which is real in nature for calculation of single variables . Here in this article we have used a quadrature

rule on the new scheme i.e. adaptive method for the evaluation of integral (1.1) for double variables.

The main principle behind adaptive quadrature is the additive property of a definite integral. If h € [m, n] then
A+B=C

Where Asz(s)ds ,B:'n[f(s)js, C=_r|lf(s)js

The idea is to compute a real integrable function f , an interval [m,n] for a prescribed tolerance ¢, the

n
integral I f (s)ds =1 so that |C - || <¢& . In adaptive integration, the points at which the integrand is

m
evaluated are chosen in accordance with the nature of the integrand. The fundamental principle is to get the sum
which gives the appropriate result with approximate evaluation of two integrals for a specified tolerance. If not,
we can recursively apply the additive property to each of the intervals [m, p] and [p, n]. Adaptive subdivision
of course has the geometrical meaning. It seems intuitive that points should be concentrated in regions where the
integrand is badly behaved. The whole interval rules can take no direct account of this.

Keeping the above facts in mind Clenshaw-Curtis quadrature rule and a quadrature rule of higher
precision (mixed quadrature rule) has been constructed with the help of two lower precision rules which is
given in sec-2 and sec-3 respectively. Sec-4 contains the error analysis. The mixed quadrature rule is tested
numerically on different definite integrals which occur in sec-5. The application and the conclusion follow
in sec-6 and sec-7 respectively.

2. Clenshaw-Curtis quadrature rule
Here f (V) can be approximated by Clenshaw-Curtis method [1] for evaluation of | (f )

|(f):ff(mv:h_jf(a+hs)ds

a
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n 1
I ~1,=hY a, [T (s)ds (2.1)
r=0 1

Where T, (S) = cos(r Cos’l(s)), r >0 the Chebyshev polynomial of degree n

T(s)= cos(”—”}

n
2x3 Ha+hs) T,(5)
=0 r=01..,n-1
n
a, = i
> fla+hs)T(s;)
=0 r=n
n
Substituting @, and T,(S) in egn (2 1)
1, = hz Zf (e +hs )T j )[T.(s
Since 'fT ___2 (r =even)
r’—1
l, = hZ(——Zril (s, )jf (@+hs) ,r=even
r=0 -
Specially for n =4,
l, :%[D+8E +12G] (2.2)

Where D = f(az—h)+ f(a+h),E:{f(a—%J+ f(m%}p: f(a)

3. Construction of the quadrature rule.
Here the two rules i.e RCCS(f )(CIenshaw—Curtis 5-point) rule and RGLS(f )(Gauss Legendre 3-point)

rule each of precision-5 have been combined to form the rule RCCSGL3(f )(mixed quadrature) rule of precision-

7. transformation —1<s<1,-1<u<1l has occurred taking the  substitution
(1+t)b l-ta,2u=1+th+(@1-t)a.
From eqn (2.2)
11
= [ [ f(s,u)dsdu =Recq(f)
-1-1
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{f fL- 1+8f( \%J+8f[ \15}121‘(10)}
{

f(-11)+ f(-1, 1+8f( 1j+8f£—1,—12j+12f(—1,0)}+

_\/E’l}rf(_\/15’_1]+8f(_\/§’\/§]+8f(_\/1§'_\/§
12{ f(01)+ f(O,—1)+8f(O,\/1§J +8f o,—1j+12 f (o,o)}

-l
()= Heuasdu=ro(1) -3 s{s{o,_@wuo,o)wf[o,@}+ (32)
Ll i)

1
jf s,u)dsdu,
-1

—
+

Using Maclaurin’s expansion of |

.L'—-n—‘ I

1(1)=4£,0(0.0)+ 2 [£,6(0,0)+ £,,00)]+ 15 [1,,(0.0)+ ,.00)]

1 1
#5100+ - [1,,0.0)+ £,,(00)]+ 211,00.0)+ £,,00)]+ (3.3)
1 1
* 5500 f4,4<o,o>+7560[f62<o 0)+ 1,500} [100(0.0)+ 10, 00)]+-
Theorem-3.1

In this theorem a mixed quadrature rule and its error have been determined.

()= Rocsous()+ Eccses )

Recsena( F)= 2 [12Recs(F)~5Recs (1]

(3.4)

Ecesens(F) =2 [12Eccs(F)-5Ecu ()] (25)

Where E..o(f) and EGLs(f ) are the errors due to R.cq( ) and Ry () respectively.
Proof: Expanding each term of eqn (3.1) and eqn (3.2) using Maclaurin’s series
1(f)=Rees (f)+ Eces(F) (3.6)
and I(f):RGL3(f)+ EGL3(f) (3-7)

Where

www.ijlera.com 2017 ULERA — All Right Reserved 77 | Page



International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume — 02, Issue — 11, November — 2017, PP — 75-81

Rees(1) = 4135(0.0)+ 2[115(0.0)+ ,,0.0)} = [1,5(0.0)+ £, 0.0)]

1 1 8
9 fz 2(0 0 [f42 0 0 f2,4(0’0)]+—[f6 0(0'0)+ fo 6(0’0)]+ (3'8)
1 224 2
'+Eﬁii5f44(0’0)+1E§;Ei[f&2(0’0) f26(0()] [f80 0,0)+ f,4(0,0)]+...
2 1
RGLS(f): 4f0,0(0’0)+§[f20(0’0) fO 2(0 0 ] [f40 O 0 + f04(0 0)]

1 1 12
9 fz 2(0 O [f42 0, 0 + fz 4(0 O)] m[fe 0(010)"' fo 6(0'0)]+ (3'9)

112 2916
3600 44( ) [ 62(0’O)+ f26(0’0)] 78125 8|[f80 0 0 + f0 8(0 0)]
Eces (F)=1(f)- Ccs(f)
4 16
=m[f60(0,0)+ foe(o’o)] 45 % [fez 0, O + fze(o O)] (3'10)
2
45 8|[f80 O 0 + fOS(O O)]
Eeus (F)=1(F)-Ras(f)
16 64
= 88 10,00+ 400 ot [,.00,0)+ 4000 (&.11
286256
+m[fa,o(0:0)+ f1s(0.0)
Multiplying (gj in eqn (3.3) and (%] in eqn (3.4) and subtracting eqn (3.4) from eqn (3.3)
I (f ): RCCSGL3(f )+ ECCSGL3(f ) (3-12)
1
Where RCCSGLB(f ): ?[12Rccs(f )_ 5RGL3(f )] (3'13)
1
EccseLs(f )= 7[12Ecc5(f )_ 5EGL3(f )] (3'14)
4. Error analysis
Theorem-4.1
. 211256
The error bound |5|ECCSGL3(f ) = m[f8 ,(0,0)+ fo ,(0,0)] .

Proof- From eqn (3.12),

I(f ): RCCSGL3(f )+ ECCSGL3<f )
RCC5GL3(f ): %[12RCC5(1: )_5R6L3(f )]

ECCSGL3(f ): %[12Ecc5(f )_SEGLS(f )]
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Hence |ECC5GL3(f )| =

Theorem-4.2

|Ecc5(3|_3(f ) <

Where M = max

—1<x<1!

32M

245 x 6!
f10 (S!*) + fo,7(*' UX

-1<y<l

Proof. We have E..(f)=

ECCSGLS( f ) =

245 6!

16
245x6!;

|EccseL3(f ] <

Where M = max

—1<x<1

16 [f
245 6!

M1y

16M
245 x 6!

32M
245x% 6!

—1<y<1

105x 6!
Ecvs (f )

1[:I-ZEccs(f )_SEGLS(f )]

60(772 ) fo,e(oinz)_ fG,O(nl,O)_ fo,e(oyﬂl)]

|772 - 771|

211256
oo (1 (0,0)+
140625 x 8!

If7050 ds+jf070u )du

h

” Lo(s#)+ fo i ( *u]dsdu

f7,o(si *) + fo,7(*’ UX

5. Numerical verification

The integrals under considerations are

)

I, = ”sue(sz’uz)du ds.
00

Table-1(comparison between exact value and approximate value with stopping criterion &)

I—”es*“duds 2:Jl’j'sinz(s+u)duds,l3
00

fO,S(O’O)

[f6,0(772 ’0) + fo (0’ ., )]
16 [ f
175x 6!

6,0 771’ + fo,6(01771)]

where 17,7, € [—1, 1]

for |7, -,/ < 2 (C.Conteand D.Boor[8] )

11
”cos s+u duds I, :££4+S+ududs,

Exact value Rccs(f ) No of RCCSGLS(f ) No of absolute error
of the integrals byn?gzggve Intervals by adaptive method Intervals (5 )
for for
RCCS(f ) RCCSGL3(f )
1,=5.52439138 | 5.52439134680 5 5.524391391356736 1 & =0.00000003
2167263 9600
1,=0.64733125 | 0.64733125748 5 0.647331256791722 1 =0.0000000009
6528834 9143
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1,=0.35266874 | 0.35266874251 5 0.352668743208278 1 &; =0.0000000009
3471166 0857

1,=0.20135513 | 0.20135513550 8 0.201355135507072 1 &, =0.0000000000007
5506889 6187

5=13.1541164 | 13.1540204272 8 13.154144863156123 3 & =0.00009
18008243 058572

6. Application
We have made a transformation of double integral into a single integral by Green’s theorem over a
square domain D in adaptive scheme.

Evaluation of line integral by Green’s theorem in adaptive environment.
Green’s theorem

Let F =[F,F,]=Fi+F,j.Then
oF, oF,
g(as —a—ujdsdu = i F.dr= i(Flds + F,du)[9]

oF, oF 12
:iF.dr :g(a;—aul)dsdu = Recsera( f )=7RCC5(f )—

{f(1,1)+ f(l,—1)+8f(1,\1@j+8f[1,—
{f(—1,1)+ f(—l,—1)+8f(—1, 1

2

5
7 RGL3(f )

1

ﬁj 12 f (1,0)} +
J+12f(—1,0)}+

|
L
|
N‘H

:% 8{f(\%,1j+ f(\lﬁ,—lj+8f( 12,12j+8f(12,—12 +12f( 12 ,oj}+
s{f(—f@,l} f[—\lﬁ,—lj+8f(—12 12j+8f(—12,—12j+12f(—\15,0j}+
12{f(0,1)+ f(O,—l)+8f(0,\1E]+8f O,—12j+12f(0,0)}
_5{5{—\E,—\EJ+8f[—\/§,Oj+5f[—\E,\EJ}+_ o

—% S{Sf[o,—\Ej 8f(0,0)+5f(0,£j}+

for( 2 -2+ oo o) (2 2)
5 5 5 5 V5
Here we integrate along the entire boundary C of D in adaptive environment.

Numerical test

Here we compare RCC5GL3(f) rule with RCC5(f) rule for approximate evaluation of line integral
through Green’s theorem for several vector function F in adaptive method. The line integrals are
(). F :[escosu,sus] , D:1<su<3

s = i F.dr= g(%(sf)—a%(es cosu)jdsdu = ﬁ(ﬁ +e°sinu)duds

(ii). F =[-coshu,sinhs], D:1<su<?2
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fF dr _ﬂ( (sinhss) —%( coshu)jdsdu ” (coshs +sinhu)duds

Table-2 (comparlson of exact value of line integral with approximate value with stopping criterion &)

Exact value Rccs(f ) No of RCCSGLS(f ) No of Intervals absolute error
by adaptive Intervals by adaptive for (g)
method method
for RCCSGL3(f )
Rees(f)

1,=66.5770202046 | 66.5770202061 5 66.577020250430 1 &, =0.00000004

09269 73898 436
1,=4.67077427047 | 4.67077427023 5 4.6707742704871 1 = 0.0000000002

1605 6460 81

7. Conclusion
The effectiveness of RCCSGL3(f) rule has been observed from seven numerical texts provided in

Table-1 and Table-2 in adaptive scheme. The rule RCCSGLS(f) takes the less number of iterations for

approximate evaluation of any integral in adaptive scheme to that of RCCS(f ) rule. This work may be extended
for any domain D instead of a square domain.
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