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Abstract: The Rijndael cryptosystem is a new Advanced Encryption Standard (AES) till now many hardware 

implementations of AES have been reported. Some of these implementations are optimized for speed, some for 

area, some for reconfigurability, and some for low-power applications. Again, reversible logic synthesis 

methodologies have drawn the attention of researchers in recent times, mainly with the prospect of quantum 

computing becoming a reality, and the potential of reversible logic circuits for providing ultra low-power 

implementations. The implementation strategy of Encryption and Decryption includes the Verilog HDL coding 

for each block in a synthesizable way. Test benches are to be written for each module and simulated using 

Xilinx simulation environment. After satisfactory functioning of each block, these blocks are combined to form 

the top level module. The top level modules are then tested by generating appropriate test vectors through test 

bench. The Verilog HDL code is compiled using Xilinx ISE 13.2. The synthesis of the architecture is carried out 

on VIRTEX-V devices. 
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I. INTRODUCTION 
In today’s digital world, encryption is emerging as a disintegrable part of all communication networks 

and information processing systems, for protecting both stored and in transit data. Encryption is the 

transformation of plain data (known as plaintext) into unintelligible data (known as cipher text) through an 

algorithm referred to as cipher. There are numerous encryption algorithms that are now commonly used in 

computation, but the U.S. government has adopted the Advanced Encryption Standard (AES) [1] to be used by 

Federal departments and agencies for protecting sensitive information. The National Institute of Standards and 

Technology (NIST) have published the specifications of this encryption standard in the Federal Information 

Processing Standards (FIPS) Publication 197. Any conventional symmetric cipher, such as AES, requires a 

single key for both encryption and decryption, which is independent of the plaintext and the cipher itself. It 

should be impractical to retrieve the plaintext solely based on the cipher text and the encryption algorithm, 

without knowing the encryption key. Thus, the secrecy of the encryption key is of high importance in symmetric 

ciphers such as AES. Software implementation of encryption algorithms does not provide ultimate secrecy of 

the key since the operating system, on which the encryption software runs, is always vulnerable to attacks. 

There are other important drawbacks in software implementation of any encryption algorithm, 

including lack of CPU instructions operating on very large operands, word size mismatch on different operating 

systems and less parallelism in software. In addition, software implementation does not fulfill the required speed 

for time critical encryption applications. Thus, hardware implementation of encryption algorithms is an 

important alternative, since it provides ultimate secrecy of the encryption key, faster speed and more efficiency 

through higher levels of parallelism. 

Different versions of AES algorithm exist today (AES128, AES196, and AES256) depending on the 

size of the encryption key. This thesis presents a hardware model for implementing the AES128 algorithm [2] 

using the Verilog hardware description language. A unique feature of the design proposed in this thesis is that 

the round keys, which are consumed during different iterations of encryption, are generated in parallel with the 

encryption process. 

Rijndael has proposed an algorithm for network security which is clean and fast with good security 

margin. The rijndael algorithm was selected as the Advanced Encryption Standard (AES) in October 2000. This 

algorithm is tested and is vulnerable to known attacks. This is also issued as the FIPS publication in November 

2001 by NIST. Since the encryption and decryption of AES algorithm are reversible [3] in nature a little effort is 

made to implement the AES algorithm using the reversible logic. The reversible logic gates [4] are very speed in 

their operation and consumes low power. They are less in cost and enables higher density. This nature of the 

reversible logic gates has motivated to implement the AES algorithm using the reversible logic gates. 
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II. LITERATURE REVIEW  
An early and highly influential block cipher design is the Data Encryption Standard (DES). The DES is 

a cipher (a method for encrypting information) selected as an official Federal Information Processing Standard 

(FIPS) for the United States in 1976, and which has subsequently enjoyed widespread use internationally. The 

algorithm was initially controversial, with classified design elements, a relatively short key length, and 

suspicions about a National Security Agency (NSA) backdoor. DES [5] consequently came under intense 

academic scrutiny, and motivated the modern understanding of block ciphers and their cryptanalysis. DES is 

now considered to be insecure for many applications. This is chiefly due to the 56-bit key size being too small; 

DES keys have been broken in less than 24 hours. There are also some analytical results which demonstrate 

theoretical weaknesses in the cipher, although they are infeasible to mount in practice. The algorithm is believed 

to be practically secure in the form of Triple DES, although there are theoretical attacks. In recent years, the 

cipher has been superseded by the Advanced Encryption Standard (AES). 

56-bit key is used in DES and 16 cycle of each 48-bit sub keys are formed by permuting 56-bit key. 

Order of sub keys is reversed when decrypting and the identical algorithm is used. Block size of 64-bit is made 

from L and R blocks of 32-bit.Triple DES [6] simply extends the key size of DES by applying the algorithm 

three times in succession with three different keys. The combined key size is thus 168 bits (3 times 56), beyond 

the reach of brute-force. 

AES was designed after DES and 3DES. Most of the known attacks on DES were already tested on 

AES. It is definitely more secure than DES due to the larger-size key. There are no differential and linear attacks 

on AES as yet. 

 

III. PROPOSED METHOD  
The An overall goal of the project is to design and implement the AES algorithm using reversible logic 

gates. The detail research objectives are: First  to design the AES algorithm using the reversible logic gates. The 

goal is to explore the speed of operation of the reversible logic AES. These timing reports are compared to the 

timing reports of a basic AES algorithm. Second  simulate the designs in the register-transfer level (RTL-level) 

simulation by using the Xilinx Verilog compiler. The top modules of encryption and decryption are synthesized 

and the timing reports are generated. The timing report of Reversible logic AES is compared with the basic AES 

algorithm. 

The AES algorithm is a symmetric cipher. In symmetric ciphers, a single secret key is used for both the 

encryption and decryption, whereas in asymmetric ciphers, there are two sets of keys known as private and 

public keys. The plaintext is encrypted using the public key and can only be decrypted using the private key. In 

addition, the AES algorithm is a block cipher as it operates on fixed-length groups of bits (blocks), whereas in 

stream ciphers, the plaintext bits are encrypted one at a time, and the set of transformations applied to successive 

bits may vary during the encryption process. 

The AES algorithm operates on blocks of 128 bits, by using cipher keys with lengths of 128, 192 or 

256 bits for the encryption process. Although the original Rijndael encryption algorithm [7] was capable of 

processing different blocks sizes as well as using several other cipher key lengths, but the NIST did not adopt 

these additional features in the AES. For 128 bits key, there will be 10 rounds of operation, for 192 bits key 

there will be 12 rounds of operation and for 256 bits key there will be 14 rounds of operation. The AES module 

with 128 bits plain text and 128 bits key is shown in figure 3.1 below, the output is a 128 bits cipher text 

 
Figure 3.1: AES module 
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 Inputs, Outputs and the State 
The plaintext input and cipher text output for the AES algorithms are blocks of 128 bits. The cipher key 

input is a sequence of 128, 192 or 256 bits. In other words the length of the cipher key, Nk, is either 4, 6 or 8 

words which represent the number of columns in the cipher key. The AES algorithm is categorized into three 

versions based on the cipher key length. The number of rounds of encryption for each AES version depends on 

the cipher key size. 

In the AES algorithm, the number of rounds is represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when Nk 

= 6, and Nr = 14 when Nk = 8.  The following table illustrated the variations of the AES algorithm. For the AES 

algorithm the block size (Nb) [8], which represents the number of columns comprising the State is Nb = 4. 

Table 3.1: AES Variations 

AES Version Key Length     (Nk) Block Size (Nb) Number  Of Rounds (Nr) 

AES 128 4 4 10 

AES 192 6 4 12 

AES 256 8 4 14 

The basic processing unit for the AES algorithm is a byte. As a result, the plaintext, cipher text and the cipher 

key are arranged and processed as arrays of bytes. For an input, an output or a cipher key denoted by a, the bytes 

in the resulting array are referenced as an, where n is in one of the following ranges: 

Block length = 128 bits, 0 <= n < 16 

Key length = 128 bits, 0 <= n < 16 

Key length = 192 bits, 0 <= n < 24 

Key length = 256 bits, 0 <= n < 24 

All byte values in the AES algorithm are presented as the concatenation of their individual bit values between 

braces in the order {b7, b6, b5, b4, b3, b2, b1, b0}. These bytes are interpreted as finite field elements using a 

polynomial representation:  

b7x
7
+b6x

6
+b5x

5
+b4x

4
+b3x

3
+b2x

2
+b1x+b0x= 𝑏ix

i
                                                                                             (3.1) 

All the AES algorithm operations are performed on a two dimensional 4x4 array of bytes which is called the 

State, and any individual byte within the State is referred to as sr,c where letter ‘r’ represent the row and letter ‘c’ 

denotes the column. At the beginning of the encryption process, the State is populated with the plaintext. Then 

the cipher performs a set of substitutions and permutations on the State. After the cipher operations are 

conducted on the State, the final value of the state is copied to the cipher text output as is shown in the following 

figure 3.2. 

 
Figure 3.2:  State Population and Results 

 

At the beginning of the cipher, the input array is copied into the State according the following scheme: 

  S[r, c] = in [r + 4c] for 0 ≤ r < 4 and 0 ≤ c < 4 

And at the end of the cipher the State is copied into the output array as shown below: 

                        Out[r+4c] = s[r, c]        for 0 ≤ r <4 and 0 ≤ c< 4 

 

 Cipher Transformations  

The AES cipher either operates on individual bytes of the State or an entire row/column. At the start of 

the cipher, the input is copied into the State as described in Section 3.2. Then, an initial Round Key addition is 

performed on the State. Round keys are derived from the cipher key using the Key Expansion routine. The key 

expansion routine generates a series of round keys for each round of transformations that are performed on the 

State. The operation of AES top module is shown in the figure 3.3 below, 
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Figure 3.3: AES Block diagram 

 

The transformations performed on the state are similar among all AES versions but the number of 

transformation rounds depends on the cipher key length. The final round in all AES versions differs slightly 

from the first Nr −1 rounds as it has one less transformation performed on the State. Each round of AES cipher 

(except the last one) consists of all the following transformation: 

       -     Sub Bytes ( )  

- Shift Rows ( )  

       -     Mix Columns ( )  

- Add Round Key ( )  

 
Figure 3.4: Schematic representation of AES Encryption and Decryption 

 

 The overall structure of the AES algorithm for encryption and decryption is shown in the following 

figure 3.8. The encryption and decryption are almost identical. Decryption follows the bottom to top approach of 

the encryption process with the inverted sub-blocks like Inverse Sub Bytes, Inverse Shift Rows, Inverse Mix 

Columns, Inverse key expansion. The tenth round key of the encryption process is taken as the cipher key for 

the decryption process. 

 

 Reversible logic implementation of AES algorithm 

In this section, a hardware model for implementing the AES128 algorithm is introduced. The model is 

implemented using the Reversible logic gates in System Verilog hardware description language. It gives the 

implementation issues of the AES128 algorithm using reversible logic. Use of reversible gates improves the 

speed of operation. The hardware model developed in this chapter is synthesizable. This means that the model 

provides a cycle-by-cycle RTL description of the circuit so that a logic synthesis tool can convert it into an 

optimized gate-level net list. The implementation of AES algorithm using the reversible logic [8] is almost 
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identical to the operation of basic AES except that the outputs of every round are given to the registers. The 

pipelined implementation of 128 bit reversible logic AES is shown in the figure 4.3 below. 

 
Figure 3.5: Reversible Pipelined Implementation of 128 Bit AES 

 

The registers present in between the round operations consists of the reversible logic gates i.e.; Toffoli 

gates and Fredkin gates [10]. These registers process the data coming from every round and give as inputs to the 

successive rounds. The outputs of the Add round key and Key generators are also processed using this 

registers[11]. The following figure 4.4 shows the 128 bit Reversible register. 

 
Figure 3.6: 128 Bit Reversible register 

 

 
Figure 3.7: RTL schematic of encryption module 

 

 
              

Figure 3.8: RTL schematic of decryption module 
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IV. RESULT AND DISCUSSION 

 Simulation results of sub byte 

Sub Byte is a sub-block in the AES module which takes 128 bits as input and provides a 128 bit data 

output. The input state values are checked in to the S-Box [12] table and the corresponding byte states are 

substituted in the form of state matrix. 

                           
Figure 4.1:Sub byte simulation results 

 

          
Figure 4.2: Shift rows simulation results 

 

                  Table 5.1: Comparison of Reversible logic AES with basic AES 

                    Constraints Basic AES Reversible logic AES 

Minimum period 4.514ns 6.711ns 

Maximum Frequency 221.516MHz 149.018MHz 

Minimum input arrival time before clock 6.255ns 3.231ns 

Maximum output required time after clock 6.407ns 5.824ns 

Maximum combinational path delay No path found No path found 

 

From the above comparison results it is clear that the minimum input arrival time before clock and the 

maximum output required time after the clock are less for Reversible logic AES when compared with the basic 

AES. Hence Reversible logic AES operation is faster than the basic AES.   

 

V. CONCLUSION  
The reversible logic implementation of the 128-bit AES block cipher has been implemented. The 

detailed synthesis results for the encryption module and decryption module has been presented. The synthesis 

results are compared with the basic AES algorithm and the comparison emphasized that the reversible logic 

AES speed of operation is greater than that of basic AES algorithm.  
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