Low Density Distribution of 3-PrimeFactors Numbers till 1 Trillion

Neeraj Anant Pande
Associate Professor, Department of Mathematics \& Statistics, Yeshwant Mahavidyalaya, Nanded-431602, Maharashtra, INDIA

Abstract

After generalizing prime numbers to ' k -PrimeFactors numbers', the first of its kind with non-trivial value 2 of k has been recently analyzed in detail. 3-PrimeFactors numbers also deserve such deep analysis and this work is the beginning of that saga. First number of 3-PrimeFactors numbers is increasing ranges are determined. There the smallest and largest such number is also noted. Then main focus is shifted to the minimality with determination of minimum count of these numbers in blocks of various sizes of powers of 10 till 1 trillion, first and last blocks containing minimum 3-PrimeFactors numbers, and total number of such blocks. Then keeping block-size fixed, increasing ranges are inspected for the study of the same kind for different block sizes.

Keywords: Prime number, k-PrimeFactors number, 3-PrimeFactors number, Low density distribution Mathematics Subject Classification (2010): 11A51, 11N05, 11 N80

I. Introduction

Mathematics is science of systematic formulation. It begins technically with numbers. Amongst numbers, the simplest ones are positive integers, also called appropriately as natural numbers. Every natural number greater than 1 is uniquely represented as product of prime numbers [1]. So prime numbers have utmost importance in number theory. Another equally strong reason for primes enjoying status of importance is that they lack precise formulation. This forces study of primes either on approximate scale or by exhaustively drilling all integers within higher and higher ranges for hunt of primes [2] and analyzing all of them there [3]. Similar policy needs be adopted for special types of primes [4].

The author has identified classes of new numbers based on prime numbers [6].
Definition (k-PrimeFactors Number) : For any integer $k \geq 0$, a positive integer having k number of prime factors, which need not be necessarily distinct, is called as k-PrimeFactors number.

Since primes are infinite in numbers, each type of k-PrimeFactors numbers is also infinite in number. As primes are randomly distributed, so are these k-PrimeFactors numbers also expected to be

II. 3-PrimeFactors Numbers

For particular value of k as 3 , we get 3-PrimeFactors numbers.
Definition (3-PrimeFactors Number) : A positive integer having exactly 3 prime divisors, not necessarily distinct, is called as 3 -PrimeFactors number.

2-PrimeFactors numbers have been analyzed from different perspectives [6], [7], [8], [9], [10], [11].
First few 3-PrimeFactors numbers are

$$
8,12,18,20,28,30, \cdots
$$

where $8=2^{3}, 12=2^{2} \times 3,18=2 \times 3^{2}, 20=2^{2} \times 5,28=2^{2} \times 7,30=2 \times 3 \times 5$ and so on.

III. Number of 3-PrimeFactors Numbers till 1 Trillion

For the analysis of 3-PrimeFactors numbers done during this work, first all prime numbers in required ranges were determined and then their products led to the database of 3-PrimeFactors numbers. Java programming language [5] was chosen to run on modern electronic computers which made this work possible.

$\frac{\text { Sr. }}{\text { No. }}$	Range	$\frac{\text { Number of 3-PrimeFactors }}{\text { Numbers in Range }}$	$\frac{\text { First 3-PrimeFactors }}{\text { Number in Range }}$	$\frac{\text { Last 3-PrimeFactors }}{\text { Number in Range }}$
1	$<10^{1}$	1	8	8
2	$<10^{2}$	22	8	99
3	$<10^{3}$	247	8	994
4	$<10^{4}$	2,569	8	9,994

Volume-02, Issue - 12, December-2017, PP - 43-56

$\frac{\text { Sr. }}{}$	Range	$\frac{\text { Number of 3-PrimeFactors }}{\text { Nombers in Range }}$	$\frac{\text { First 3-PrimeFactors }}{\text { Number in Range }}$	Last 3-PrimeFactors Number in Range
5	$<10^{5}$	25,556	8	99,997
6	$<10^{6}$	250,853	8	999,994
7	$<10^{7}$	$2,444,359$	8	$9,999,994$
8	$<10^{8}$	$23,727,305$	8	$99,999,994$
9	$<10^{9}$	$229,924,367$	8	$999,999,998$
10	$<10^{10}$	$2,227,121,996$	8	$9,999,999,995$
11	$<10^{11}$	$21,578,747,909$	8	$99,999,999,998$
12	$<10^{12}$	$209,214,982,911$	8	$999,999,999,998$

Obviously number of 3-PrimeFactors numbers increases with increase in the inspection range. But their percentage is seen lowering. For all ranges, the first 3-PrimeFactors number is 8 . Within various ranges, the last 3-PrimeFactors numbers remain quite near range-end.

IV. Minimum Number of 3-PrimeFactors Numbers in Blocks of Sizes $\mathbf{1 0}^{\boldsymbol{n}}$

Whole range of numbers less than 1 trillion was covered and by choosing blocks of sizes of 10 powers like, $10,10^{2}, 10^{3}$ and so on till the trillion itself, the minimum number of 3-PrimeFactors numbers in occurring in these blocks, first and last blocks with such minimum 3-PrimeFactors numbers in them and number of blocks containing minimum numbers are found to be as follows. The very first block is represented by 0 , second by $1 \times$ BlockSize and so on.

$\begin{aligned} & \underline{S r} . \\ & \underline{N o} . \end{aligned}$	BlockSize	Minimum 3-PrimeFactors Numbers in Block	First Block of Minimum 3-PrimeFactors Numbers	Last Block of Minimum 3-PrimeFactors Numbers	No. of Blocks with Minimum $\frac{\text { 3-PrimeFactors }}{\text { Numbers }}$
1	10^{1}	0	80	999,999,999,980	8,302,155,790
2	10^{2}	1	516,628,703,800	988,235,695,200	6
3	10^{3}	143	647,491,209,000	906,595,627,000	2
4	10^{4}	1,876	873,427,890,000	873,427,890,000	1
5	10^{5}	20,140	991,516,300,000	991,516,300,000	1

Volume - 02, Issue - 12, December - 2017, PP - 43-56

$\frac{S r}{N o}$	$\begin{aligned} & \text { Block- } \\ & \hline \text { Size } \end{aligned}$	Minimum 3-PrimeFactors Numbers in Block	First Block of Minimum 3-PrimeFactors Numbers	$\frac{\text { Last Block of Minimum }}{\frac{\text { 3-PrimeFactors }}{\text { Numbers }}}$	No. of Blocks with Minimum 3-PrimeFactors Numbers
6	10^{6}	205,154	995,219,000,000	995,219,000,000	1
7	10^{7}	2,061,834	978,790,000,000	978,790,000,000	1
8	10^{8}	20,639,030	995,600,000,000	995,600,000,000	1
9	10^{9}	206,437,397	999,000,000,000	999,000,000,000	1
10	10^{10}	2,064,543,373	990,000,000,000	990,000,000,000	1
11	10^{11}	20,658,070,805	900,000,000,000	900,000,000,000	1
12	10^{12}	209,214,982,911	0	0	1

The minimum number of 3-PrimeFactors numbers within blocks of increasing size goes on increasing with higher percentage of occurrence. But there are fewer blocks of larger size containing respective minimum 3-PrimeFactors numbers in them.

The first and last blocks of various sizes containing minimum number of 3-PrimeFactors numbers are following block distances away for initial and final blocks respectively.

After this analysis of 3-PrimeFactors numbers in complete range of 1 trillion for different block sizes; for block of each size, similar analysis in increasing ranges is undertaken.

IV.1. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size 10

We start with block size 10 for searching minimum number of 3-PrimeFactors numbers in block, first and last block of minimum numbers and number of such blocks. For this size, block 0 means first block 0 to 9 , block 10 means second block from 10 to 19 and so on.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

$\frac{\underline{S r}}{\frac{N o}{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 10-Size Block	First 10-Size Block of Minimum 3-PrimeFactors Numbers	Last 10-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{1}$	1	0	0	1
2	$<10^{2}$	0	80	80	1
3	$<10^{3}$	0	80	300	2
4	$<10^{4}$	0	80	9,930	48
5	$<10^{5}$	0	80	99,980	453
6	$<10^{6}$	0	80	999,490	5,069
7	$<10^{7}$	0	80	9,999,290	55,033
8	$<10^{8}$	0	80	99,999,840	594,259
9	$<10^{9}$	0	80	999,999,740	6,462,922
10	$<10^{10}$	0	80	9,999,999,950	70,377,372
11	$<10^{11}$	0	80	99,999,999,880	765,492,029
12	$<10^{12}$	0	80	999,999,999,980	8,302,155,790

Except for first range, the minimum 3-PrimeFactors numbers in blocks of size 10 for higher ranges is 0 . There is variation in the percentage of number of blocks of size 10 containing minimum 3-PrimeFactors numbers for different ranges.

Starter block of minimality is at a fixed block distance 8 from initial block and last such block has varying block distance with final blocks.

IV.2. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{\mathbf{2}}$

Next block of study is of size 10^{2}, i.e., 100 . So, here block 0 stands for number range 0 to 99 , block 100 stands for number range 100 to 199 and so on.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

$\frac{\frac{S r}{N o}}{\underline{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 10^{2}-Size Block	First 10^{2}-Size Block of Minimum 3-PrimeFactors Numbers	Last 102 ${ }^{2}$-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{2}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{2}$	22	0	0	1
2	$<10^{3}$	22	0	800	4
3	<10 ${ }^{4}$	16	8,000	8,000	1
4	$<10^{5}$	15	98,300	98,300	1
5	<10 ${ }^{6}$	12	658,500	658,500	1
6	$<10^{7}$	9	5,386,600	5,386,600	1
7	$<10^{8}$	7	20,268,500	20,268,500	1
8	$<10^{9}$	3	702,075,500	702,075,500	1
9	$<10^{10}$	3	702,075,500	702,075,500	1
10	$<10^{11}$	3	702,075,500	96,498,363,700	21
11	$<10^{12}$	1	516,628,703,800	988,235,695,200	6

With increasing range, number of minimum 3-PrimeFactors numbers in blocks of size 100 decreases.

The first and last blocks of minimum 3-PrimeFactors numbers stay more and more away from respective ends.

IV.3. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{\mathbf{3}}$
10^{3}, i.e., 1000 , is size of block now. Here block 0 represents number range 0 to 999 , block 1000 represents number range 1000 to 1999 and so on.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

$\frac{\frac{S r}{N o}}{\underline{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 103-Size Block	First 10^{3}-Size Block of Minimum 3-PrimeFactors Numbers	Last 103-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{3}-Size Blocks with Minimum 3-PrimeFactors Numbers
2	$<10^{4}$	246	7,000	7,000	1
3	$<10^{5}$	219	64,000	64,000	1
4	$<10^{6}$	212	708,000	708,000	1
5	$<10^{7}$	205	9,767,000	9,767,000	1
6	$<10^{8}$	184	59,718,000	59,718,000	1
7	$<10^{9}$	175	513,595,000	513,595,000	1
8	$<10^{10}$	159	8,415,920,000	8,415,920,000	1
9	$<10^{11}$	154	41,330,787,000	41,330,787,000	1
10	$<10^{12}$	143	647,491,209,000	906,595,627,000	2

The values are analysed graphically.

IV.4. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $10^{\mathbf{4}}$

Now its turn of block size 10^{4}, i.e., 10000 , block 0 indicating number range 0 to 9999 , block 10000 indicating number range 10000 to 19999 and so on.

$\frac{\underline{S r}}{\underline{N o}}$	Range		First 10^{4}-Size Block of Minimum 3-PrimeFactors Numbers	Last 10^{4}-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{4}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{4}$	2,569	0	0	1
2	$<10^{5}$	2,505	60,000	60,000	1
3	$<10^{6}$	2,416	940,000	940,000	1
4	$<10^{7}$	2,319	9,980,000	9,980,000	1
5	$<10^{8}$	2,217	89,800,000	89,800,000	1

Volume - 02, Issue - 12, December - 2017, PP - 43-56

$\frac{\underline{S r}}{\underline{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 10 -Size Block	First 10^{4}-Size Block of Minimum 3-PrimeFactors Numbers	Last 10^{4}-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{4}-Size Blocks with Minimum 3-PrimeFactors Numbers
6	$<10^{9}$	2,138	846,940,000	846,940,000	
7	$<10^{10}$	2,048	9,038,000,000	9,038,000,000	1
8	$<10^{11}$	1,958	67,273,370,000	67,273,370,000	1
9	$<10^{12}$	1,876	873,427,890,000	873,427,890,000	1

For higher ranges, the minimality continues to decrease and first container block goes on farther from initial block.

IV.5. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size 10^{5}

After 10^{4}, its block size 10^{5}, i.e., 100000 , under inspection; wherein block 0 gives number range 0 to 99999 , block 100000 gives number range 100000 to 199999 and so on.

$\frac{\underline{S r}}{\underline{N o}} \underline{\underline{2}}$	Range	Minimum 3-PrimeFactors Numbers in 10^{5}-Size Block	First 105-Size Block of Minimum 3-PrimeFactors Numbers	Last 105-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{5}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{5}$	25,556	0	0	
2	$<10^{6}$	24,706	900,000	900,000	1
3	$<10^{7}$	23,962	8,800,000	8,800,000	1
4	$<10^{8}$	23,097	99,700,000	99,700,000	1
5	$<10^{9}$	22,318	765,200,000	765,200,000	1
6	$<10^{10}$	21,627	9,241,200,000	9,241,200,000	1
7	$<10^{11}$	20,873	76,674,600,000	76,674,600,000	1
8	$<10^{12}$	20,140	991,516,300,000	991,516,300,000	1

Volume-02, Issue - 12, December-2017, PP - 43-56
In this case also, the occasions of lesser frequency of occurrences of 3-PrimeFactors numbers do come with increasing effect.

IV.6. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size 10^{6}

Now its turn of block size 10^{6}, i.e., 1000000 , block 0 being number range 0 to 999999 , block 1000000 being number range 1000000 to 1999999 and so on.

$\begin{aligned} & \frac{S r}{\underline{S r}} \\ & \frac{N o .}{} . \end{aligned}$	Range	Minimum 3-PrimeFactors Numbers in 10^{6}-Size Block	$\begin{gathered} \frac{\text { First } 10^{6}-\text { Size Block }}{\text { of Minimum }} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	$\begin{gathered} \frac{\text { Last } 10^{6} \text {-Size Block of }}{\text { Minimum }} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	$\begin{gathered} \frac{\text { Number of } 10^{6} \text {-Size }}{\text { Blocks with Minimum }} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$
1	$<10^{6}$	250,853	0	0	1
2	$<10^{7}$	241,227	9,000,000	9,000,000	1
3	$<10^{8}$	233,589	89,000,000	89,000,000	1
4	$<10^{9}$	226,144	968,000,000	968,000,000	1
5	$<10^{10}$	218,771	9,900,000,000	9,900,000,000	1
6	$<10^{11}$	211,817	99,470,000,000	99,470,000,000	1
7	$<10^{12}$	205,154	995,219,000,000	995,219,000,000	1

Mostly blocks with lower density of 3-PrimeFactors numbers in them are situated quite near last end.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

IV.7. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{\mathbf{7}}$

Higher block size is 10^{7}, i.e., 10000000 ; block 0 just means number range 0 to 9999999 , block 10000000 means number range 10000000 to 19999999 and so on.

$\underline{\underline{S r}} \underline{\underline{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 10^{7}-Size Block	$\frac{\text { First } 10^{7} \text {-Size Block }}{\text { of Minimum }}$ $\frac{\text { 3-PrimeFactors }}{\text { Numbers }}$	$\begin{gathered} \frac{\text { Last } 10^{7} \text {-Size Block of }}{\text { Minimum }} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	Number of 10^{7}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{7}$	2,444,359	0	0	1
2	$<10^{8}$	2,343,049	90,000,000	90,000,000	1
3	$<10^{9}$	2,267,924	990,000,000	990,000,000	1
4	$<10^{10}$	2,195,201	9,900,000,000	9,900,000,000	1
5	$<10^{11}$	2,126,428	99,140,000,000	99,140,000,000	1
6	$<10^{12}$	2,061,834	978,790,000,000	978,790,000,000	1

There are unique blocks of size 10^{7} with lowest density of 3-PrimeFactors numbers for all ranges under consideration.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

IV.8. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{\mathbf{8}}$

Next number is of block size 10^{8}, i.e., 100000000 . Here block 0 refers to range 0 to 99999999 , block 100000000 to range 100000000 to 199999999 and so on.

$\begin{aligned} & \underline{S r} . \\ & \underline{N o} . \end{aligned}$	Range	Minimum 3-PrimeFactors Numbers in 10^{8}-Size Block	$\begin{gathered} \frac{\text { First } 10^{8} \text {-Size Block }}{\text { of Minimum }} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	$\begin{aligned} & \frac{\text { Last } 10^{8} \text {-Size Block of }}{\text { Minimum }} \\ & \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{aligned}$	Number of 10^{8}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{8}$	23,727,305	0	0	1
2	$<10^{9}$	22,694,343	900,000,000	900,000,000	1
3	$<10^{10}$	21,965,152	9,900,000,000	9,900,000,000	1
4	$<10^{11}$	21,283,640	99,600,000,000	99,600,000,000	1
5	$<10^{12}$	20,639,030	995,600,000,000	995,600,000,000	1

Trends continue with minute variations.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

IV.9. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{\mathbf{9}}$

Next pick up is block size of 10^{9}, i.e., 1000000000 ., block 0 corresponds to range 0 to 999999999 , block 1000000000 corresponds to number range 1000000000 to 1999999999 and so on.

$\frac{\underline{S r}}{\underline{N o}}$	Range	Minimum 3-PrimeFactors Numbers in 10^{9}-Size Block	First 10^{9}-Size Block of Minimum 3-PrimeFactors Numbers	Last 10^{9}-Size Block of Minimum 3-PrimeFactors Numbers	Number of 10^{9}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{9}$	229,924,367	0	0	1
2	$<10^{10}$	219,801,976	9,000,000,000	9,000,000,000	1
3	<10 ${ }^{11}$	212,869,279	99,000,000,000	99,000,000,000	1
4	$<10^{12}$	206,437,397	999,000,000,000	999,000,000,000	1

Lowest Density blocks continue to remain stuck to the ends.

Volume - 02, Issue - 12, December - 2017, PP - 43-56
IV.10. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $\mathbf{1 0}^{10}$

Further we take up block size 10^{10}, i.e., 10000000000 , block 0 denotes range 0 to 9999999999 , block 10000000000 denotes number range 10000000000 to 19999999999 and so on.

$\frac{\underline{S r}}{\underline{N o}}$	Range	$\frac{\text { Minimum }}{\text { 3-PrimeFactors }}$ $\frac{\text { Numbers in }}{10^{l 0} \text {-Size Block }}$	$\begin{gathered} \text { First } 10^{10} \text {-Size Block } \\ \frac{\text { of Minimum }}{} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	$\begin{gathered} \text { Last } 10^{10} \text {-Size Block } \\ \frac{\text { of Minimum }}{} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	Number of 10^{10}-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{10}$	2,227,121,996	0	0	1
2	$<10^{11}$	2,130,043,367	90,000,000,000	90,000,000,000	1
3	$<10^{12}$	2,064,543,373	990,000,000,000	990,000,000,000	1

The number of blocks containing minimum number of 3-PrimeFactors numbers is also minimum, i.e., 1 , within our range.

IV.11. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size 10^{11}

Higher block size is of 10^{11}, i.e., 100000000000 , where block 0 signifies number range 0 to 99999999999 , block 100000000000 signifies number range 100000000000 to 199999999999 and so on.

$\frac{\underline{S r}}{\underline{N o}}$	Range	$\begin{aligned} & \frac{\text { Minimum }}{\text { 3-PrimeFactors }} \\ & \frac{\text { Numbers in }}{10^{I I} \text {-Size Block }} \end{aligned}$	$\begin{gathered} \text { First } 10^{I I} \text {-Size Block } \\ \frac{\text { of Minimum }}{} \\ \frac{\text { 3-PrimeFactors }}{\text { Numbers }} \end{gathered}$	$\begin{gathered} \text { Last } 10^{I I} \text {-Size Block } \\ \frac{\text { of Minimum }}{\text { 3-PrimeFactors }} \\ \text { Numbers } \end{gathered}$	Number of $10^{1 I}$-Size Blocks with Minimum 3-PrimeFactors Numbers
1	$<10^{11}$	21,578,747,909	0	0	1
2	$<10^{12}$	20,658,070,805	900,000,000,000	900,000,000,000	1

In this case also, the trends of the graphs are in harmony with those for earlier block sizes.

Volume - 02, Issue - 12, December - 2017, PP - 43-56

IV.12. Minimum Number of 3-PrimeFactors Numbers in Blocks of Size $1 \mathbf{0}^{12}$

The last block size of 1 trillion resembles with the whole study range itself. So the complete range itself is the only block of its size. It naturally is the first as well as the last block of minimum number of 3-PrimeFactors numbers in it. There are 209214982911 3-PrimeFactors numbers in it.

This analysis showed that 3-PrimeFactors numbers become rare only in higher ranges for blocks of all sizes. Also there happen to be lesser blocks with lowest densities of 3-PrimeFactors numbers.

Acknowledgements

All the computers in the laboratory of the Department of Mathematics \& Statistics of author's college have been put to laborious work for getting the analysis done. On software side, the author wishes to express his gratitude to the Development Teams of Java programming language, NetBeans IDE and Microsoft Excel as these software have proved to be immense use during the work.

The author is also thankful to the referee(s) of this paper.

References

[1] Benjamin Fine, Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, (Birkhauser, 2007).
[2] Neeraj Anant Pande, Improved Prime Generating Algorithms by Skipping Composite Divisors and Even Numbers (Other Than 2), Journal of Science and Arts, Year 15, No. 2 (31), 2015, 135-142.
[3] Neeraj Anant Pande, Analysis of Primes Less Than a Trillion, International Journal of Computer Science \& Engineering Technology, Vol. 6, No. 06, 2015, 332-341.
[4] Neeraj Anant Pande, Analysis of Twin Primes Less Than a Trillion, Journal of Science and Arts, Year 16, No. 4 (37), 2016, 279-288.
[5] Herbert Schildt, Java : The Complete Reference, $7^{\text {th }}$ Edition (Tata Mc-Graw Hill 2007)
[6] Neeraj Anant Pande, Low Density Distribution of 2-PrimeFactors Numbers till 1 Trillion, Journal of Research in Applied Mathematics, Vol. 3, Issue 8, 2017, 35-47.
[7] Neeraj Anant Pande, High Density Distribution of 2-PrimeFactors Numbers till 1 Trillion, American International Journal of Research in Formal, Applied \& Natural Sciences, 2017, Communicated.

Volume - 02, Issue - 12, December - 2017, PP - 43-56
[8] Neeraj Anant Pande, Minimum Spacings between 2-PrimeFactors Numbers till 1 Trillion, Journal of Computer and Mathematical Sciences, Vol. 8 (12), 2017, 769-780.
[9] Neeraj Anant Pande, Maximum Spacings between 2-PrimeFactors Numbers till 1 Trillion, International Journal of Mathematics Trends and Technology, 2017, Volume 52, Number 5, 2017, 311-321.
[10] Neeraj Anant Pande, Digits in Units Place of 2-PrimeFactors Numbers till 1 Trillion, International Journal of Mathematics And its Applications, 2017, Accepted.
[11] Neeraj Anant Pande, Digits in Units and Tens Place of 2-PrimeFactors Numbers till 1 Trillion, International Journal of Engineering, Science and Mathematics, Vol.6, Issue 8, 2017, 254-273.

