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Abstract: Properties of a mixture of bosons and fermions at low temperature have been studied when the 

mixture is enclosed in a trap. Gross-Pitaevskii mean field equation for the boson distribution in the trap is solved 

by utilizing Thomas-Fermi Approximation to extract the density profile of the fermion and boson components. 

The results show that the Fermi gas will constitute a core enclosed by the Bose condensate when the boson-

fermion interaction strength( 𝑕) is less than the boson-boson interaction strength(𝑔) i.e. 𝑕 < 𝑔.  For 𝑕 = 𝑔, the 

fermions have a constant spatial density where the bosons are localized and thus both condensates co-exist 

simultaneously. For 𝑕 > 𝑔, fermions constitute a shell around a core of Bose condensate. 

Key Words: Boson-Fermion mixtures, Boson-Boson interaction, Boson-Fermion interaction, Scattering 

lengths, Trapping potential.. 

 

1. Introduction 
Since the experimental realization of Bose- Einstein condensation in dilute gases of Rubidium 

1–4
, 

Sodium 
5, 6

, Lithium 
7
, and Hydrogen 

8
a great deal of interest in Bose 

Condensed systems have concentrated on the topic of multi- component condensates. This field was stimulated 

by the successful demonstration of overlapping condensates in different spin states of Rubidium in a magnetic 

trap 
9, 10

 and of Sodium in an optical trap 
11

, the (binary) mixtures being produced either by sympathetic cooling, 

which involves one species being cooled to below the transition temperature only through thermal contact with 

an already condensed Bose gas, or by radiative transitions out of a single component condensate. Since then, a 

host of experiments has been conducted on systems with two condensates, exploring both the dynamics of 

component separation 
12

, and measuring the relative quantum phase of the two Bose- Einstein condensates 
13

. 

Most of the theoretical work concerning multi-component condensates 
14 –23

 has been devoted to systems of two 

Bose condensates. However, other systems are of fundamental interest. One of these being a Bose condensate 

with fermionic impurities, for instance a system 
40

K -
87

Rb, a Boson- Fermion mixture. In particular the 

possibility of sympathetic cooling of fermionic isotopes has been predicted in both 
6
Li-

7
Li 

24
, 

39
K-

40
K, and 

41
K-

40
K 

25
. Magneto - optical trapping of the fermionic Potassium isotope 

40
K has also been reported 

26
. 

 

Quantum degeneracy was first reached with mixtures of bosonic 𝐿𝑖3
7  and fermionic 𝐿𝑖3

6 12
, and also with 

𝑁𝑎11
23  (bosonic) and 𝐿𝑖3

6  (fermionic) as well as 
87

Rb (bosonic) and 
40

K (fermionic) at ultra-low temperatures. 

These boson-fermion mixtures offer unique possibilities to study the effects of quantum statistics directly. 

Superfluidity has also been obtained experimentally in a mixture of Bose condensed gas and superfluid Fermi 

gas of two Lithium atoms, 
6
Li and 

7
Li 

27
, where a new mechanism of superfluidity and its instability was 

observed. In a Bose-Fermi superfluid mixture, there could be a fully mixed phase and a fully separated phase, 

and a third phase could consist of pure fermions in equilibrium with a mixture of bosons and fermions 
28

 or it 

could be pure bosons in equilibrium with a mixture of bosons and fermions. Ultimately the conditions for 

stability of homogenous phase of the mixture have to be studied. The phase diagram of a weakly interacting 

Boson-Fermion mixture at zero temperature can be derived starting from the following expression for energy 

density 𝐸(𝑛𝐹; 𝑛𝐵), i.e, 

𝐸 𝑛𝐹; 𝑛𝐵 =
1

2
𝑔𝐵𝐵𝑛𝐵

2 + 𝑔𝐵𝐹𝑛𝐵𝑛𝐹 +
3

5
𝐸𝐹𝑛𝐹                                                            (1) 

Where 𝑛𝐵 is the density of bosons, 𝑛𝐹  is the density of fermions and 𝐸𝐹 =
ℏ2𝑘𝐹

2

2𝑚𝐹
 , where 𝑘𝐹  is the fermi 

momentum and 𝑚𝐹  is the mass of the fermi particles; 𝑔𝐵𝐵  is the boson-boson inter-species coupling constant 

and 𝑔𝐵𝐹  is the boson-fermion coupling constant. These coupling constants are related to corresponding 

scattering lengths 𝑎𝐵𝐵  and 𝑎𝐵𝐹 . Recent experiments have shown that Boson-Fermion scattering length does not 
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depend on the internal state of the Fermi atoms 
29

. The stability condition predicted by the energy density of Eq. 

(1) for the uniform mixture is 

𝑛𝐹

1
3 =

ℏ2𝑔𝐵𝐵

2𝑚𝐹𝑔𝐵𝐹
2                                                                                           (2) 

For 𝑛𝐹  larger than this critical value, the uniform mixture is unstable and the system exhibits either 

partial or full phase separation. However, interacting superfluid fermions and the Bose-condensed bosons are 

coupled via the interspecies interaction term determined by 𝑔𝐵𝐹 . In general, the number of bosons and the 

number of fermions are not equal in the mixture. But the stability conditions of the mixture will depend on the 

relative number of bosons and fermions in the mixture, and this will also determine the phase separation, i.e., 

whether the box is filled with pure fermions, while bosons are still in the mixed phase in the remaining volume; 

and this corresponds to the partially mixed phase of the mixture. 

Recently, bosonic lasers have been developed based on BEC of exciton-polaritons in semiconductor 

micro cavities. These electrically neutral bosons coexist with charged electrons and holes, which are thus 

Boson-Fermion mixtures. In the presence of magnetic fields, the charged particles are bound to their cyclotron 

orbits, while the neutral exciton-polaritons move freely. In this way the magnetic fields dramatically affect the 

phase diagram of a mixed Boson-Fermion mixture, switching between fermionic lasing, incoherent emission 

and bosonic lasing 
30

 

The trapping of the boson-fermion mixture is via the Feshbach resonance method. This is a method in 

which the spin dependence of the inter-atomic interaction gives rise to both open and closed channels. In the 

context of ultra-cold gases, they are of special importance as they allow the modification of the interactions 

between the atoms, in particular the scattering length 
31

. A good example of such a mixture is 
6
Li-

40
K and 

87
Rb-

40
K 

32
. More details about collisions among the atoms of gases can be found in 

33
. It is also known that when the 

87
Rb (boson) atoms are not completely evaporated, various regimes of mixtures are accessible, ranging from 

dense thermal 
87

Rb cloud of 10
7
, 

87
Rb right at the phase transition point interacting with a moderately degenerate 

Fermi gas (
40

K) of 2 × 106 atoms to deeply degenerate mixtures with almost pure condensate 
34

. Stability 

conditions for Boson-Fermion mixtures have been studied leading to the values of NB and NF for stability 
25

. 

There is also a recent experimental realization of Boson-Fermion superfluid mixtures of dilute ultra-

cold atomic gases. Depending upon the values of the scattering lengths, and the amount of bosons and fermions, 

a uniform Boson-Fermion mixture could exhibit a fully mixed phase, or a fully separated phase, or a pure 

fermionic phase co-existing with a mixed phase. 

In ultra-cold atomic gases, the strength of the interspecies and intra-species interaction can be varied by 

means of an external magnetic field (what is called Feshbach resonance method). This leads to the exploration 

of the whole phase diagram of the mixture 
35, 29

. The Boson-Fermion mixture could be of two types. One in 

which the bosonic superfluid is the minority component, and the second in which the fermions are the minority 

component 
36

. The miscibility and immiscibility is determined by interaction. It is also found that the Boson-

Fermion phase diagram is known to admit, in addition to a fully mixed phase and a fully separated phase, also a 

third phase consisting of a pure fermions in equilibrium with a mixture of fermions and bosons
37

. Laser cooling 

can, lead to very low temperatures, of the order of 10
-9

K (nano Kelvin). At these temperatures the Fermi gas will 

be degenerated, Bose gas will be a condensate, and the two systems can interact. There could be inter-gas and 

intra-gas interactions. However, the inter-gas interaction in a Fermi gas could be neglected due to Pauli 

Principle and the interactions between bosons, and bosons and fermions have to be taken into account. The 

boson-boson interaction is represented by 𝑔 and the boson-fermion interaction is represented by 𝑕. The strength 

of both the interactions must be proportional to the S-wave scattering lengths. 

To study the properties of a mixture of bosons and fermions at low temperature, Gross-Pitaevskii mean 

field equations for the boson distribution in the trap is solved by utilizing Thomas-Fermi Approximation to 

extract the density profile of boson and fermion components. How the condensates behave for different 

comparative values of 𝑕 and 𝑔 has been studied. 

 

2. Theoretical Derivations 
Assuming that the degenerate Fermi gas interacts with Bose condensate and the mixture is trapped in 

an external potential 𝑉𝑒𝑥𝑡  𝑟 , the atoms will interact by elastic collisions. At low temperatures, the atoms will 

have low kinetic energies and thus permit replacement of their short range interaction with a delta function. In 

the mean field description, the single particle wave function 𝜓 𝑟 , assumed to describe all bosons in the gas, is 

governed by Gross Pitaevskii Equation. 

 −
ℏ2

2𝑀
𝛻2 + 𝑉𝑒𝑥𝑡  𝑟 + 𝑔𝑁𝐵 𝜓 𝑟  2  𝜓(𝑟) = 𝜇𝜓(𝑟)                                                  (3) 
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The Thomas Fermi Approximation exploits the fact that at low temperature, kinetic energy of the atom 

is so small that the kinetic energy operator  (−
ℏ2

2𝑀
𝛻2 𝑟) can be neglected. Hence Eq. (3) becomes, 

(𝑉𝑒𝑥𝑡  𝑟 + 𝑔𝑁𝐵 𝜓 𝑟  2)𝜓 𝑟 =  𝜇𝜓 𝑟                                                          (4) 

Dividing Eq. (4) by 𝜓(𝑟) yields, 

𝑉𝑒𝑥𝑡  𝑟 + 𝑔𝑁𝐵 𝜓 𝑟  2  =  𝜇                                                                            (5) 
Re-arranging Eq. (5) gives, 

𝑛𝐵 𝑟 = 𝑁𝐵 𝜓 𝑟  2 =
𝜇−𝑉𝑒𝑥𝑡  𝑟 

𝑔
                                                                (6) 

Where 𝑁𝐵 𝜓 𝑟  2 = 𝑛𝐵 𝑟   is bosonic density, 𝑉𝑒𝑥𝑡  𝑟 is the external confining potential and 𝜇 is the bosonic 

chemical potential (energy per particle). The value of 𝜇 is fixed by normalization condition.  𝑑3𝑟. 𝑛𝐵 𝑟 = 𝑁𝐵 , 

the total number of bosons. The harmonic oscillator potential is given by, 

𝑉𝑒𝑥𝑡  𝑟 =
1

2
Mω2r2                                                                                                                (7) 

where r is the distance from the trap centre. 𝜇 is determined analytically to be 

𝜇 =  
15

8𝜋
𝑁𝑔  

𝑀𝜔2

2
 

3
2 

 

2
5 

                                                                             (8) 

When N is very small, Thomas-Fermi Approximation gives a good approximation to the exact 

distribution of particles and to the single particle energy. For low kinetic energy, short range interaction 

potential is replaced by a delta function of strength  𝑔 and 𝑕.  

 

For the particles in the TFA (Thomas-Fermi Approximation), due to Pauli‟s exclusion principle, the 

atoms in the degenerate gas of fermions do not occupy a single state. Hence there is no equivalent of Gross 

Pitaevskii equation for fermions. Instead, the particles will be described by classical position and momenta. 

However, we use the quantum mechanical result that a volume in phase space d
3
rd

3
k can accommodate, 

𝑑3𝑟𝑑3𝑘

ℏ3 2𝜋 3 

fermions, i.e., if the local density 𝑛𝐹 𝑟  will have the wave numbers within the interval 0 ≤ 𝑘 ≤ 𝑘𝐹 𝑟 . The 

fermions will experience a local potential, 

𝑉 𝑟 = 𝑉𝑒𝑥𝑡  𝑟 + h. 𝑛𝐹 𝑟                                                                                                     (9) 

For the particles in motion for such a potential, it is possible to define a local Fermi vector 𝑘𝐹 𝑟  by, 

EF =
ℏ2kF r 2

2M
+ V r                                                                                             10  

So that the volume of the local Fermi sea in 𝑘 space is  
4

3
𝜋𝑘𝐹 𝑟 = (2𝜋)3𝑛𝐹 𝑟                                                                                                     (11) 

Local Fermi vector will be given by 

𝑘𝐹 𝑟 =  6π2𝑛𝐹 𝑟  
1

3 

                                                                                             (12) 

In low temperature limit, p-wave scattering can be neglected. The suppression of the s-wave scattering 

amplitude due to antisymmetry of the many body function implies that the spin polarized fermions may 

constitute a non-interacting gas; hence the energy density of fermionic component is given by the expression; 

ℏ2𝑘𝐹
2 𝑟 

2𝑀
+ 𝑉𝑒𝑥𝑡  𝑟 + 𝑕. 𝑛𝐵 𝑟 = 𝐸𝐹                                                                      (13) 

Re-writing Eq. (13) using Eq. (6) and Eq. (12) yields, 

𝐸𝐹 =
ℏ2  6π2𝑛𝐹 𝑟  

2
3 

2𝑀
                                                                

+  1 −
𝑕

𝑔
 𝑉𝑒𝑥𝑡  𝑟 +

𝑕

𝑔
𝜇                                                                 (14) 

In isotropic traps, the trapping potential  𝑉𝑒𝑥𝑡 (𝑟) felt by bosonic component is equal to the local 

potential experienced by the fermionic component, i.e. 

 𝑉𝑒𝑥𝑡  𝑟 = 𝑉 𝑟  
or 

𝜇 − 𝑔. 𝑛𝐵 𝑟 = 𝑉𝑒𝑥𝑡  𝑟 + h. 𝑛𝐹 𝑟    
or 

𝜇 = 𝑉𝑒𝑥𝑡  𝑟 + 𝑔. 𝑛𝐵 𝑟 + h. 𝑛𝐹 𝑟                                                    (15) 
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In TFA, the density distribution for both components can be obtained by solving the coupled Eq. (14) and (15). 

The mean occupation number of the single particle energy states with energy 𝜀𝑛  is given by 

𝑓(𝜀𝑛) =
1

𝜁−1𝜀𝛽𝜀𝑛 + 𝑎
                                                                                      (16) 

Where 𝜁 = 𝜀𝛽𝜇 , is the fugacity, 𝛽 =
1

𝐾𝑇
 and 𝑎 =  

−1     Bose Einstein Statistics                  
+1            Fermi Dirac Statistics               

0   Maxwell − Boltzmann Statistics

  

In Fermi-Dirac statistics, the mean occupation number can become utmost one (Pauli‟s exclusion principle). 

Hence Eq. (16) becomes, 

 

𝑓(𝜀𝑛) =
1

𝜀
(𝜀𝑛−𝜇

𝐾𝑇
) + 1

                                                                                                     (17) 

For harmonically trapped gases, density of states as a function of energy is given by
4
, 

𝑔 𝜀 =
𝜀2

2 ℏ𝜔 3
                                                                                                                  (18) 

The number of particles in the excited states can be calculated according to 

𝑁𝐹 =  𝑓 𝜀 𝑔 𝜀 . 𝑑𝜀          

∞

0

                                                                                                     (19) 

Integrating Eq. (19) with 𝑓 𝜀 =  
1  𝜀 > 𝐸𝐹

0  𝜀 < 𝐸𝐹

  

gives, 

𝑁𝐹 =  𝑔 𝜀 . 𝑑𝜀                                                                                                                  (20)

𝐸𝐹

0

 

Substituting Eq. (18) in Eq. (20) gives, 

𝑁𝐹 =  𝑔
𝜀2

2 ℏ𝜔 3
. 𝑑𝜀                                                                                                         (21)

𝐸𝐹

0

 

Integrating Eq. (21) yields, 

𝑁𝐹 =
𝐸𝐹

3

6 ℏ𝜔 3
                                                                                                                    (22) 

The fermionic energy will be given by, 

𝐸𝐹 =  6𝑁𝐹 
1

3ℏ𝜔                                                                                                                  (23) 

Combining Eq. (14) and (23) we get, 

 6𝑁𝐹 
1

3ℏ𝜔 =
ℏ2  6π2𝑛𝐹 𝑟  

2
3 

2𝑀
                                                                               

+  1 −
𝑕

𝑔
 𝑉𝑒𝑥𝑡  𝑟 +

𝑕

𝑔
𝜇                                                                             (24)  

Combining Eq. (7), (8) and (24) yields, 

 6𝑁𝐹 
1

3ℏ𝜔 =
ℏ2  6π2𝑛𝐹 𝑟  

2
3 

2𝑀
                                                                          

+  1 −
𝑕

𝑔
 

1

2
Mω2r2                                           

+
𝑕

𝑔
 
15

8𝜋
𝑁𝑔  

𝑚𝜔2

2
 

3
2 

 

2
5 

                                                                   (25) 

Re-arranging Eq. (25) gives, 
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𝑛𝐹 𝑟 =  
 
 

 
 

2𝑀

ℏ2  

 6𝑁𝐹 
1

3ℏ𝜔 −  1 −
𝑕

𝑔
 

1

2
Mω2r2

−
𝑕

𝑔

15

8𝜋
𝑁𝐵𝑔  

𝑚𝜔 2

2
 

3
2 

 

2

5

 
 
 

 
 

3

2

6𝜋2
                                           (26) 

Eq. (26) gives an expression for fermionic density. 

Eq. (15) gives bosonic density 𝑛𝐵 𝑟 , such that, 

𝑛𝐵 𝑟 =
𝜇−𝑉𝑒𝑥𝑡  𝑟 − 𝑕. 𝑛𝐹 𝑟 

𝑔
                                                                    (27) 

The strength of the boson-boson interaction 𝑔 is chosen to give maximal overlap between the two atomic 

clouds. In order to have clouds of comparable sizes, we equate the Thomas Fermi expression for the radius of 

the Bose Condensate 15𝑁𝐵𝑔 4𝜋𝑀𝜔2  
1

5 and the radius of zero temperature Fermi gas 48𝑁𝐹 
1

6 ℏ 𝑀ω  
1

2 such 

that, 

 15𝑁𝐵𝑔 4𝜋𝑀𝜔2  
1

5 =  48𝑁𝐹 
1

6 ℏ 𝑀ω  
1

2                                                              (28) 

 

This gives; 

𝑔 =
21.1𝑁𝐹

5

6

𝑁𝐵

. ℏωa0
3                                                                                                      (29) 

 

3. Parameters 
Table 1 gives a list of parameters of the experiments with a

87
Rb–

40
K boson-fermion mixture. 

Parameters Hamburg experiment
23

 Florence experiment 
14,24,25

 

mass of 
87

Rb atom 𝑚 𝐵 =  14.43 ×  10−26  kg 

mass of 
40

K atom 𝑚 𝐹 =  6.636 ×  10−26  kg 

s-wave scattering length (bosons ↔ bosons) 

𝑎 𝐵𝐵 = (5.238 ×  10−9•± 0.002)  m 

s-wave scattering length (bosons ↔ fermions) 

𝑎 𝐵𝐹 = −15.0 × 10−9m𝑎 𝐵𝐹 = (−20.0 × 10−9 ± 0.8) m 

radial trap frequency (bosons) 𝜔𝐵,𝑟 =  2π. 257 Hz  𝜔𝐵,𝑟 =  2π. 215 Hz  

axial trap frequency (bosons) 𝜔𝐵,𝑧 =  2π. 11.3 Hz   𝜔𝐵,𝑧 =  2π. 16.3 Hz   

radial trap frequency (fermions)  𝜔𝐹,𝑟 =  2π.  379 Hz   𝜔𝐹,𝑟 =  2π.  317 Hz   

axial trap frequency (fermions) 𝜔𝐹,𝑧 =  2π.  16.7 Hz  𝜔𝐹,𝑧 =  2π.  24.0 Hz  

number of bosons 𝑁𝐵 = 106  𝑁𝐵 = 2 ×  105 

number of fermions 𝑁𝐹 = 7.5 ×  105 𝑁𝐹 = 3 ×  104 

 

Below is a list of parameters which have been used in the calculations.  𝑔, is chosen to give maximal overlap 

between the two atomic clouds. Other parameters used for calculations are; 

𝑁𝐹 = 103 

𝑁𝐵 = 107 

𝑀 =
𝑀𝐹𝑀𝐵

𝑀𝐹 + 𝑀𝐵

= 4.54559 × 10−26𝐾𝑔 

ω = 2π × 216Hz 

𝑔 = 0.00066724ℏ ωa0
3  

   ħ =
𝑕

2𝜋
= 1.0545 × 10−34𝐽𝑠 

𝑎0 =  
ħ

𝑀ω
 

1

2
, h=g/2,  h=g,  and h=3g/2 

 

𝑀𝐵 = 1.45 × 10−25𝐾𝑔 

 𝑀𝐹 = 6.636 × 10−26𝐾𝑔 
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The density distribution of fermions is given by Eq. (26) and that of bosons is given by Eq. (27). 

Numerical values for 𝑛𝐹 𝑟  and 𝑛𝐵 𝑟 can be obtained for different values of h and g from Eq. (26) and Eq. (27) 

respectively. 

 

 

 

4. Results and Discussion 
When  h< g, the fermions experience a minimum potential at the center of the trap and therefore they 

populate around the center of the trap (r=0). Their number reduces as one moves away from the center. This is 

shown in the figure 1 (a). Bosons on the other end are expelled from the center of the trap. Their numbers 

increase as the distance from the trap center, is increased. This is shown in the figure 1(b). Since the number of 

fermions was small enough, they constituted a „core‟ enclosed by the Bose condensate. The oscillation in the 

fermion density distribution near the trap center reflects the matter wave modulation in the outermost shell. In 

the center of the trap, the fermions in the lowest energy state experience a vanishing potential for h=0. The 

bosons are expelled from the trap center, minimizing their interaction energy by spreading in a shell around the 

fermionic bubble. The fermionic   component is compressed, having a higher peak and density covering a 

smaller portion of the trapping volume. A similar behavior has been noted for bi-condensate systems 
18, 19

. The 

two quantum gases are said to be truly interpenetrating. In this case a Bose condensate of about 10
7
atoms may 

enclose roughly 10
3
 Fermions. For  𝑕  <   𝑔, the distribution is as shown in the Fig 1 

 

Figure 1; (a) shows the density distribution for fermions and (b) bosons at zero kelvin temperature for 

𝑕 < 𝑔 (𝑕 =
1

2
𝑔) 

(a)                                                                       (b) 

 
 

 

Thomas Fermi theory provides of a functional form for kinetic energy of non-interacting electron gas 

.One of the essential features predicted in the Thomas-Fermi Approximation is the existence of a plateau of a 

constant fermionic density throughout the distribution. This phenomenon also appears in this quantum 

treatment. When h = g, the fermions have a constant density throughout the Bose condensate, as shown in the 

figure 2, falling towards zero outside.  

 

 

 

 

 

 

 

 

 

Figure 2; (a) shows the density distribution for fermions and (b) bosons at zero kelvin temperature for 

h =g. 
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(a)                                                           (b) 

 
 

When 𝑕  >  𝑔, the effective potential for the fermions is that of an in inverted harmonic oscillator 

having a minimum at the edge of the Bose condensate, where the fermions localize as a “shell” wrapped round 

the condensate. If the outer part is composed of fermions, and the number of fermions exceeds the limit of the 

Bose Condensate, then the atoms in the inner core will experience a stronger confining potential. The 

distribution is as shown in the figure 3. The fermions have been expelled from the Centre of the trap Centre and 

their number increase as the distance from the trap is increased. We note that the semi-classical description 

gives a qualitatively correct description, in that it reliably predicts the phase separation. 

 

Figure 3; (a) shows the density distribution for bosons and (b) fermions at zero kelvin temperature for 

h > g and h = 3g/2. 
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We notice that as the bosons are expelled from the center of the trap, forming a ‟mantle‟ around the 
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of the trapping volume. A similar behavior has been noted for bi-condensate systems 
18, 19

. One of the essential 

features predicted in the Thomas-Fermi approximation is the existence of a ‟plateau‟ of constant fermion density 

through the boson distribution for  h = g as illustrated by Fig. 2. Such a phenomenon also appears in our 

quantum mechanical treatment, although with the parameters chosen it does not involve quite as many particles 

as obtained from the semi-classical calculations 
2
. It is interesting to compare the above mentioned results with 

those obtained by treating the fermions in the Thomas-Fermi Approximation. 

Depending on the relative magnitude of the types of interactions considered, one can obtain conditions 

for the kind of phase transitions and the phases (like super-fluid phase) that can exist in the mixture of bosons 

and fermions. Such studies will involve more complicated and advanced many-body theory. It will be important 
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to consider the effect of attractive boson-fermion interactions, and that of the repulsive boson-fermion 

interactions on the density profiles of bosons, fermions and boson-fermion
38

 mixture. Also some sort of 

interaction between fermions must be taken into account. A many-body theory in this regard is being developed 

and will be published later.  
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