Pervious concrete & its characteristics

Shreyas.K¹, Lavanya.J²

¹(Asst professor, Dept of CTM, Acharya Institute of Technology, Bangalore, India) ²(M.Tech Student, IR-Rasta, Bangalore, India)

Abstract: The advantage of a pervious concrete pavement is to allow the runoff water to its below layers effectively, this characteristic of the pavement is usually dependent on the pore size, geometry & connectivity of the materials. The functional benefits of porous pavements are improved wet-weather driving safety, reduced tire pavement noise and replenishing of groundwater supplies, this paper presents a study in which the effects of aggregate gradations on the permeability and mechanical properties of pervious concrete were investigated. Concrete mix with various aggregate gradations are tested for 3 days & 7 days compressive strength for obtaining the optimum gradation mix for the porosity level varying from 15 to 35% by keeping 0.4 as water cement ratio. It has been found that there is considerable increase in compressive strength with increase in percentage of finer aggregates (Manufactured-sand) in the mix & also there is a reduction of percentage in porosity where the voids of coarse aggregates is filled by finer particles which will increase the strength of the mix. A mix design with little water can create a very weak binder. A mix design with too much water can collapse the void space, making an almost impenetrable concrete surface in which there is a considerable variation of compressive strength due to variation of water content in the mix. The efficiency of pervious concrete will depend on amount of porosity & co efficient of permeability of mix where there is a significant gain in co efficient of permeability for the concrete specimens tested for 28 days which are having porosity more than 20% when compared to 7 days & 3 days specimens having less percentage of porosity which are tested by Darcy's law of permeability.

Key words: Porous concrete, permeability, mix design, compressive strength.

I. Introduction

Pervious concrete also termed as porous concrete with no or less finer materials is a mixture of coarse Aggregates, admixtures & water, the mix constitutes high porosity that allows run off water from precipitation and other sources from the surface layer to enter in to the below layers directly thereby reducing runoff and increase in groundwater recharge.

Pervious concrete is traditionally used in parking areas, areas with Light or Low traffic volume roads, Residential streets, Sub base for conventional concrete pavements & Pedestrian walkways. It is an important technique that leads for sustainable construction & low impact on environment. The porous aggregate structure allows run off water in to the concrete surface layer & to below layers of pavement without compromising its durability or integrity.

The voids to mineral aggregate ratio will vary between 15 to 35% for the pervious mix, a suitable amount of sand or fine mixture can be used to increase the compressive strength of concrete mix where this will reduce the air voids content in the mixture thus will reduce permeability. The proper volume of mortar mix design leads to coating of binding material equally to an individual aggregates which will increase durability of concrete mix also the voids in between should be interconnected so they create proper channel through which the run off can be drained off effectively in to the below layers.

Due to an open graded interconnected air void structure porous concrete has been found that it acts as an effective noise absorbent during the movement of vehicular wheels. The tyre noise generated by conventional concrete pavement is more when compared to open graded porous concrete pavements, it also reduces flooding of surface layer due to storm water runoff & hydro planning of vehicles which will lead to decrease in efficiency of concrete pavements.

Pervious concrete pavement and its sub base can also be provided with enough water storage capacity as a reservoir to eliminate the need for retention of ponds, swales and other precipitation runoff containment strategies which leads to the natural treatment of polluted water by soil filtration and longer service life for the pavements.

II. Review Of Literature

There is a considerable variation of properties of concrete mix due to the influence of coarse & fine aggregate quantities in the mix ratio. The materials used for mix are ordinary Portland cement, fine aggregate corresponding to grading II and four sizes of coarse aggregate namely, 4.75 mm to 9 mm, 9 mm to 12.5 mm, 12.5 mm to 16 mm, 16 mm to 19.5 mm. Mixes were prepared with the water cement ratio of 0.34, fine aggregate was replaced with coarse aggregate in the range of 50 - 100% by its weight & Coefficient of permeability was determined by using falling head permeability test [1].

Presence of air voids in the concrete mix will affect the performance characteristics of concrete where a void ratio from 15 to 35% will increase the strength & durability of concrete. Use of pervious concrete in pavement industry will give an expansive scope for further research of characteristics & sustainable roadway material in future [2].

The physical & engineering characteristics of no-fines concrete mix are investigated where it is subjected to unconfined compression, indirect tension & static modulus of elasticity, the effect of these properties on aggregate mix is tabulated. It was found that the strength of no-fines concrete is strongly related to its mixture proportion and compaction energy, a sealed compressive strength of 20.7 MPa can readily be achieved with an aggregate cement ratio of 4.5:1 [3].

Voids in a concrete mix will reduce the strength of concrete mix so a balanced aggregate & cement ratio should be provided. The traffic wheel loads & volumes also will also leads to structural dis integrity of pavements, a proper compaction is also necessary to maximise compressive strength without having detrimental effects [4].

Due to impermeable layers on the top surface, run off water is not infiltrated in to the ground which leads to improper supply of water in to underground level & also is difficult for soil beneath the ground surface for exchange of heat & moisture with air. In the analysis 10 various concrete mixes were tested by varying Cement content & the effects of such variation on the properties of pervious concrete mixes were studied [5].

The porosity of concrete pavement will be depending on design & interlocking of concrete block pavements, recent innovations like development of combined geothermal heating & cooling, water treatment & recycling of pavement systems are outlined in brief [6].

Investigations on mechanical-hydrological & durability properties of pervious concrete has shown in the analysis that pervious concrete as a pavement material on low volume traffic roads has gained a huge importance due to its positive environmental aspects. The efficiency of pervious concrete with respect to storm water runoff has been done by investigating few test sections & the porous concrete pavements are more suitable in the heavy rainfall areas to reduce storm water runoff & to recharge ground water level [7].

Pervious concrete pavement is an open graded pavement which has an underlying stone reservoir which will capture run off & stores it before it infiltrates in to the sub grade soil. This sub base reservoir replaces the traditional pavement which allows storm water to infiltrate directly in to the below layers. The sub base layer when properly designed & installed where the air voids percentage is more than 15%, pervious concrete can be used substantially applied to reduce the volume of run off & to reduce pollution of storm water runoff [8].

After the construction of pavements, during the design service life maintenance is a major issue where the surface & below layers has to be maintained to avoid structural & non-structural deficiencies. The cause & identification of pavement distresses related to porous concrete pavements & their remedial techniques has been discussed [9].

The effect of urbanisation will lead to global warming, Pervious concrete has a good characteristics with respect to drainage & absorption of solar radiations by which we can reduce the effect of global warming. Porous concrete can also minimize storm water runoff by allowing it to percolate in to below layers which will constitute in recharging of ground water table however if the pavement is not maintained correctly that leads to the clogging of pores & decrease in storm water carrying capacity, periodic maintenance is very much necessary throughout the design life for effective utilisation of pavements[10].

By using different types of admixtures many investigations such as density, void content, compressive strength, split tensile strength, permeability, freeze & thaw ability has been conducted to enhance the structural & durability characteristics of pervious concrete pavements[11].

III. Materials & Methodology

1. Materials

- a) Ordinary Portland cement of 53 grade.
- b) Coarse aggregates of pertaining sieve sizes as per IS standards.
- c) Fine aggregates (M-Sand) of pertaining sieve sizes as per IS standards.

Volume – 02, Issue – 07, July – 2017, PP – 20-27

d) Potable water for mixing the constituents.

2. Methodology

Preliminary tests were conducted on the materials as per IS standards & specifications, cubes were casted in the standard metallic moulds & vibrated to obtain the required sample size of specimen. The moulds were cleaned initially and oiled on all the sides before concrete sample is poured in to it. Thoroughly mixed concrete is poured into the moulds in three equal layers and compacted using vibrating table for a small period of 5 minutes. The excess concrete is removed out of the mould using trowel and the top surface is finished with smooth surface.

After 24 hours the samples were demoulded and put in curing tank for the respective periods of 3,7and 28 days a set of 3 samples were prepared for each stage of curing. The temperature of curing tank was maintained about 25 degree during the analysis of compressive strength, permeability & the results are tabulated.

3. Tests conducted for coarse aggregates

- 1. Sieve analysis
- 2. Specific gravity and Water absorption test
- 3. Aggregate crushing test
- 4. Aggregate impact value test

The aggregate gradation was continuous with the maximum aggregate size of 19mm. The gradation & other tests were performed as per ASTM standards with 4 trials on each test & the below table represents the physical properties of materials.

TABLE-1 Test on coarse aggregates

Si no	Test	Method of test	Average Result	Permissible value
1	Sieve analysis	IS:2720-Pt-4	Fineness modulus	2.3 to 3.1
			= 2.80	
			Bulk specific	
2	Specific gravity	IS:2386-Pt-3	gravity = 2.61	2.5 to 3.2
			Apparent specific	
			gravity = 2.5	
3	Water absorption	IS:2386-Pt-3	0.51	<2%
4	Aggregate crushing test	IS:2386-Pt-4	16.44%	<30%
5	Aggregate impact test	IS:2386-Pt-4	12%	<24%

4. Tests conducted for fine aggregates (Manufactured sand of size < 4.75mm)

1. Specific gravity and Water absorption test

TABLE-2 Test on M-Sand (Fine aggregates)

Si no	Test	Method of test	Average Result	Permissible value
			Bulk specific	
1	Specific gravity	IS:2720-Pt-3	gravity = 2.60	2.53 to 2.67
			Apparent specific	
			gravity = 2.48	
2	Water absorption	IS:2386-Pt-3	0.6	<2%

5. Tests conducted for cement (53 grade cement)

- 1. Specific gravity test
- 2. Soundness test
- 3. Normal consistency of cement

TABLE-3 Test on Cement

Si no	Test	Method of test	Average Result	Permissible value
1	Specific gravity	IS:2720-Pt-3	3.15	3.12 to 3.19

Volume − 02, *Issue* − 07, *July* − 2017, *PP* − 20-27

2	Soundness	IS:4031-Pt-3	4 mm	< 10mm
3	Normal consistency	IS:4031-Pt-4	29%	26 o 33%

6. EXPERIMENTAL DESIGN

6.1 MIX DESIGN

Volumetric batching is done for the material mix to analyse the amount of quantity required for casting each cube specimen considering the design mix as M25 grade as per IS 383-1970 specifications. The aggregates mix are varied up to 35% of porosity by varying the materials having minimal or zero number of fine aggregates & is mixed with cement to cast the moulds for analysing the compressive strength along with permeability test for 3 days & 7 days strength. After the calculation of maximum compressive strength with amount of fine aggregates (M-sand) taking that as optimum amount of fine aggregates in the mix cubes were casted & 3 days, 7 days & 28 days Compressive strength is tabulated by varying the water cement ratio from 0.25 to 0.55 for the concrete specimens.

6.2 PERMEABILITY TEST

After the specimens are casted for calculating compressive strength, the same has to be measured for Darcy's co efficient of permeability. The casted specimens of 3 days, 7 days & 28 days are tested for permeability co efficient where the casted specimens are covered by epoxy resins & the water is allowed to flow inside the specimen by varying the pressures of 0.5 & 1 bar by noting down the time required for quantity of water to percolate inside the porous specimens for a standard temperature between 21 to 25 degrees.

6.3 COEFFICIENT OF PERMEABILITY

1. Determine the cross sectional area (A) in square metres of the test sample using the following formula:

$$A = (\pi/4) *D^2$$
 (1)

where D = Diameter of test sample, to the nearest 0.001m.

- 2. Determine the applied pressure head (h) in metres of water.
- 3. D'Arcy Coefficient of Permeability is calculated using the following formula: $k = \{(QL) / (tAh)\}$ (2) where k = D'Arcy Coefficient of Permeability (m/s), Q = Volume of water in m^3 , L = Length of the test sample in metres, to the nearest 0.001m, t = L Elapsed time in seconds, t = L Applied pressure head in metres of water, t = L Area of the test sample in t = L Area of the test sample in t = L Area.

IV. Results & Discussion

1. Relationship between Fine Aggregate and Porosity with Compressive Strength

The pores of coarse aggregates will be filled by finer aggregates & the voids of finer aggregates will be occupied by cement particles. Initially to calculate the percentage of fine aggregates that should be added for the specimen is calculated by considering zero fines in the mix to the percentage of fines up to 14% taking water cement ratio as 0.4 & the optimum fine aggregate percentage has been calculated for both 3 days & 7 days of compressive strength.

TABLE-4 Compressive strength in Mpa for different % of finer aggregates (M-sand) for 3 days

Si no	% Finer aggregates	Compressive strength in Mpa
1	0	7
2	2	12
3	4	16
4	6	21
5	8	23
6	10	18
7	12	14
8	14	10

TABLE-5 Compressive strength in Mpa for different % of porosity in a mix for 3 days

Si no	% of porosity in the mix	Compressive strength in Mpa
1	35	6
2	30	11
3	25	18

Volume – 02, *Issue* – 07, *July* – 2017, *PP* – 20-27

4	20	21
5	15	25

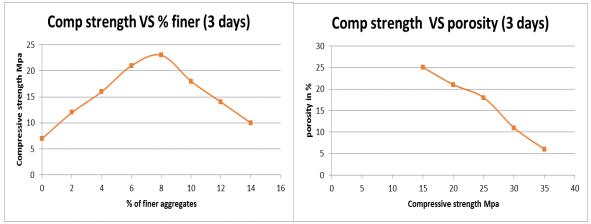


Fig – 1 Comparison between compressive strength VS % finer & % porosity of the mix for 3 days

TABLE-6 Compressive strength in Mpa for different % of finer aggregates (M-sand) for 7 days

Si no	% Finer aggregates	Compressive strength in Mpa
1	0	10
2	2	14
3	4	19
4	6	23
5	8	29
6	10	22
7	12	15
8	14	8

TABLE-7 Compressive strength in Mpa for different % of porosity in a mix for 7 days

Si no	% of porosity in the mix	Compressive strength in Mpa
1	35	10
2	30	13
3	25	21
4	20	24
5	15	27

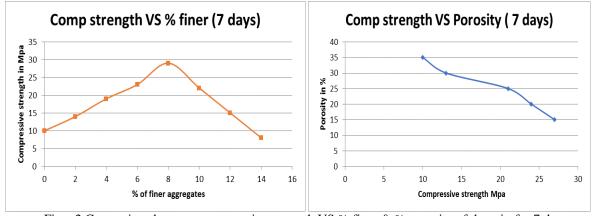


Fig – 2 Comparison between compressive strength VS % finer & % porosity of the mix for 7 days

Relationship between Water-to-Cement ratio and Compressive Strength

By taking 8 % of the total weight in the mix as optimum mixture of fine aggregates (M-sand) cubes were casted having the dimensions of 150*mm150*mm150mm, vary the water cement ratio from 0.25 to 0.55 & test for 3 days, 7 days & 28 days compressive strength of concrete specimens.

TABLE-8 Compressive strength in Mpa VS water cement ratio for 3 days

Si no	Water cement ratio	Compressive strength in Mpa
1	0.25	5.6
2	0.3	8.9
3	0.35	10.2
4	0.4	11.3
5	0.45	7
6	0.5	6.3
7	0.55	6

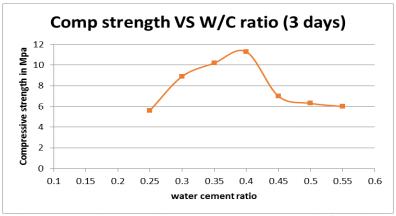


Fig-3 Compressive strength in Mpa VS water cement ratio for 3 days

TABLE-9 Compressive strength in Mpa VS water cement ratio for 7 days

Si no	Water cement ratio	Compressive strength in Mpa
1	0.25	6.1
2	0.3	10.6
3	0.35	12.1
4	0.4	15.4
5	0.45	8.1
6	0.5	7.6
7	0.55	5.8

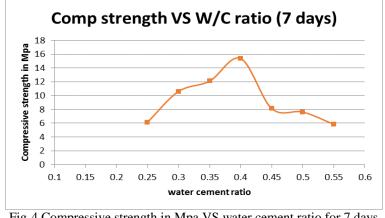


Fig-4 Compressive strength in Mpa VS water cement ratio for 7 days

TABLE-10 Compressive strength in Mpa VS water cement ratio for 28 days
--

Si no	Water cement ratio	Compressive strength in Mpa
1	0.25	6.2
2	0.3	9.8
3	0.35	12.1
4	0.4	14.3
5	0.45	8.9
6	0.5	8.2
7	0.55	5.7

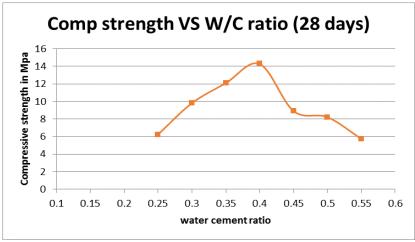


Fig-5 Compressive strength in Mpa VS water cement ratio for 28 days

TABLE-11 Coefficient of permeability

Si no	Pressure (bar)	No of Days	K (mm/s)
1	0.5	3	6.8
2		7	7
3		28	7.3
4	1	3	8
5		7	8.3
6		28	9

Conclusion

Based on the various laboratory tests as per IS standards for the porous concrete by varying the composition the following conclusions are drawn:

- 1. The compressive strength of pervious concrete with larger size aggregate was lesser, when compared to finer mix which can be attributed to the smaller air void and better binding between the aggregates.
- 2. There is a reduction in percentage of porosity in the concrete mix with the increase of compressive strength due to clogging of finer particles for all the specimens tested under 3 days, 7 days & 28 days.
- 3.It has been observed that when the finer aggregate to coarse aggregate ratio is increased up to 8 % there is a considerable increase in compressive strength, When it is beyond the 8 % of total weight, there is a considerable reduction in strength of the concrete specimens.
- 4. The co efficient of permeability had been tested for 3 days, 7 days & 28 days specimens by varying the pressure of discharge, there is no considerable variation of flow with respect to the concrete specimens.
- 5. There is a considerable variation of compressive strength with variation of Water cement ratio, there is reduction of strength for lesser water cement ratio & a considerable peak value of strength is obtained for water cement ratio of 0.4.
- 6. A mix design with little water can create a very weak binder. A mix design with too much water can collapse the void space, making an almost impenetrable concrete surface.

References

- [1]. V.M.Malhotra "No-Fines Concrete Its Properties and Applications", ACI Journal, November 1976, Vol. 73, Issue 11, pp 628-644.
- [2]. Klieger, Paul "Further Studies on the Effect of Entrained Air on Strength and Durability of Concrete with Various Sizes of Aggregate", Concrete International, November 2003, Vol. 25, No. 11, pp 26-45.
- [3]. Ghafoori, Nader, "Pavement Thickness Design for No-Fines Concrete Parking Lots", Journal of Transportation Engineering, November/December 1995, Vol. 121, No. 6, pp 476-484.
- [4]. Chopra M., Wanielista, (2007): "Performance assessment of Portland cement pervious concrete", Rep. Prepared for Storm water Management Academy, Univ. of Central Florida, Orlando, Fla, pp. 1-125.
- [5]. Mr.V. R. Patil Prof. A. K. Gupta "Use Of Pervious Concrete In Construction Of Pavement For Improving Their Performance" (2006) VOL. 2 PP: 54-56.
- [6]. Meininger, Richard C., "No-Fines Pervious Concrete for Paving", Concrete International, August 1988, Vol. 10, No. 8, pp 20-27.
- [7]. Harber, P.J. (2005): "Application of No-fines concrete as a Road Pavement", Rep. Univ., of Southern Queensland, pp. 1-130.
- [8]. Brown, Dan, "Pervious Concrete Pavement: A Win-Win System", Concrete Technology Today, August 2003, Vol. 24, No. 2, pp 1-3.
- [9]. Chopra, M.M., Kakuturu, S., Ballock, C., Spence, S. and Wanielista, M.M. (2010): "Effect of rejuvenation methods on the infiltration rates of pervious concrete pavements", J. ASCE, 15(6).
- [10]. A.M Made and S.Rogg (2013), "Development of High Quality Pervious concrete Specification For Maryland Conditions" Final Report MD-13-SP009B4F.
- [11]. Kevern, J.1, Wang, K. "Pervious concrete pavement has been in use for over 30 years in Florida and an experimental road" was constructed in England in the 1960's (Youngs 2005, Maynard 1970).

Bibilography

Author-1

Shreyas.K is working as an assistant professor from june 2012 to june 2017 in department of civil engineering Global academy of technology RR Nagar Bangalore Currently working in the Dept of CTM Acharya Institute of Technology Bangalore. The author has completed UG degree in civil from MS Ramaiah institute of technology Bangalore, Post-graduation in highway engineering from RV college of engineering. The author is also pursuing Doctoral degree from Bangalore university.

Current and previous research interests of the author is in the design & evaluation of pavement & pavement materials.

- 1. Life Member of I.S.T.E.
- 2. Life member of I.C.I.
- 3. Life member of I.R.C.
- 4. Life member of I.S.C.A.

Author-2

Lavanya.J is a co-author for the paper born & brought up in Bangalore. She is studying her Bachelor Degree in Department of civil engineering Global academy of technology Bangalore. She is also Pursuing her Master Degree from IR-Rasta (Research center for Asphalt &Soil Training Academy) Road institute Bangalore.