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Abstract: In this paper we define the Mid-truncated two-parameter Lindley distributionand derive some of its
statistical properties such as moments, moment generating function and characteristicfunction. We have also
obtained the recurrence relations for single and product moments of order statistics in a random sample of size n
drawn fromMid-Truncated two-parameter Lindley distribution.
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1. Introduction

The truncated distributions are quite effectively used where a random variable is restricted to be
observed on some range and these situations are common in various fields. For instance, in survival analysis,
failures during the warranty period may not be counted. Items may also be replaced after certain time following
the replacement policy, so that failures of the item are ignored. Therefore, many researchers were being attracted
to the problem of analyzing such truncated data encountered in various disciplines.Many authors like Malik
(1967), Balakrishnan and Joshi (1981), Balakrishnan et al. (1988),Saran and Pushkarna(1999 a, b), etc. have
obtained several results for the single and product moments of order statistics from the un-truncated, left
truncated, right truncated and doubly truncated distributions. Mohie EI-Din and Sultan (1993) have obtained
recurrence relations for moments of order statistics from doubly truncated continuous distributions.But there
exist life models which do not obey the complete or truncated distribution, for example, in Microbiology, when
a bacterial strain is inoculated into a liquid growth medium, the population is counted at intervals, it is possible
to plot a bacterial growth curve. There are three basic phases of growth: the log, stationary, and death phases.
During log phase, the bacterial cells are most metabolically active and are preferred for industrial purposes.
During stationary phase we find that the number of cells will still remain constant due to the number of bacterial
death balances with the number of new cells. Consequently during this phase no investigation is required. After
the stationary phase the most bacterial cells will diebecause of the exclusion of nutrientsand would lead to
accumulation of waste products. In such live models mid-truncated distributions are quite effectively used where
the random variable is restricted to be observed on some sub intervals of the given specified range.(cf. Okasha et
al. (2011) and Mohie EI-Din et al. (2013)).

Monitoring the wide applicability of the truncated distributions, we propose the mid-truncation in the
two-parameter Lindley distribution. Lindley distribution was introduced by D.V. Lindley (1958) in the context
of Bayesian analysis as a counter example of fiducial statistics and is a mixture of exponential and gamma
distributions. A detailed study about its important mathematical and statistical properties, estimation of
parameter and applicationshowing the superiority of Lindley distribution over exponential distribution has been
done by Ghitany et al.(2008). Shanker et al. (2015) have comparative study on modeling of lifetime data using
one parameter Lindley (1958) distribution and exponential distribution and concluded that there are many
lifetime data where exponential distribution gives better fit than Lindley distribution.

Shanker and Mishra (2013) proposed the two parameter Lindley distribution,of which the one
parameter Lindley distribution is a particular case, and have discussed its various properties and have shown that
the two parameter Lindley distribution provides a better alternative to the one parameter Lindley distribution.
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2. Mid-truncated distribution
We define the Mid-truncated distribution as follows:
Let Y be a continuous random variable with baseline probability density function (pdf)g(y)andcumulative
distribution function (cdf)G (y).Define X as a corresponding mid-truncated variable, of the random variable Y,
with pdf f(x).We define
g9(x) ;
f) = 4 6@ r=Q

9(x) :
oD ifx=P

L0<p<1,0<qg<I st p+q=1,0;<P,, 2.1)

which is called the mid-truncated density function, andQ,andP; are the points of mid truncation of the baseline
distribution under consideration. Also we assume that

Q=/% g (x)dx, (2.2)
and
1-P =f;:g (x)dx. (2.3)

Then equation (2.1) can be rewritten as

Pl L ifx<Q
f(x) =

¢?2 | ifx=P

The distribution function of a mid-truncated random variable X is given by:

L0<p<1,0<q<I st p+q=10;<P,. (2.4)

p G(x)
_)" 6@
F(x) = 1-G(x)

TGy

—OO<XSQ1 (25)

[ﬁ < x < oo,

2.1 Statistical Measures
The k-th moment of any arbitrary mid — truncated random variable X defined over
(—», Q1) U(Py, ), (denoted by u)) is given by:
k) — _P_ (A Kk q © _k
WY =2 S5 x* g(xydx + e Jp, x* g(X)dx.
Integrating by parts, we get
(k)=_P k 1, (91 k-1
HO=L-101%G(Q0) — k [% X" G(x)dx]

q k) _ pk P1 k-1
(I_G(Pl))[u PGP +k [ x G(x)dx], (2.6)

where p® is the k-th moment of the corresponding un-truncated random variable.
In a similar way, we can define Moment generating function(M*(t)) and Characteristic function (®*(t)) of
the random variableX as follows:

K\ — nptQ _ Pt Q1 xt q __tP Pt
M*(t) = pet@ — 22 [T eX G)dx + o= [M(0) — e MG (P) + ¢ [ e™ G(X)ox], 2.7)
and

¥ P = npit@1 _ Pt rQ1 ixt q _ itPy (P iex
@*(t) = pe TN J e™ G(x)dx + T [@(t) — e G(P) + it [_ e™ G(x)dx], (2.8)

whereM (t) and @ (t) are the moment generating functionand the characteristic function of the corresponding
un-truncated random variable.

Note:In the following sections we will considerp = q =§ .

3. Mid-truncated two-parameter Lindley distribution
Shanker and Mishra (2013) introduced a two parameter Lindley distribution with its probability density function
(pdf) given as

g(x):%(a+x)e_’b‘, x>0,1>0al> -1, (3.1)

and the cumulative distribution function(cdf) as

G(x) = 1—-(Hetti)e=2r x>0, 1>0,al> —1. (3.2)

1+al
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Then the probability density function (pdf) of mid-truncated two-parameter Lindleydistribution is given by

/12(0[+x)e_)'x 0<x< Q
200+an ) <Q
FO= 1 e (33)
samaray 0 DisSx<o
and the cumulative distribution function(cdf) is given by
1 a X —_
20— (5T e ™), 0<x<Q
F(= 1 (1+aitix),—ix (3.4)
T 201-p) \ Ttaz )e , P <x <o,
Using (3.3) and (3.4), we get the relation between pdf and cdf as
1-L 4+ £(x) (1+0M.+lx) ’ 0<x<0
= 2Q A% (a+x)
1-F(x) = o ; o5
+a i+
f(x)(m) , P <x<om.

The mid-truncated two-parameter Lindley density function for o = 1.5 and 2 =0.5, p = g= 0.5 truncated at
Q:=2.0and P,;=3.0 is provided in Figure 3.1.
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Figure 3.1: Probability density function for mid-truncated two-parameter Lindley distribution

Let X1.X5, Xy be a random sample of size n from the mid-truncated two-parameter
Lindleydistributiondefined in (3.3) and let X;., < X,., <... < X,,., be the corresponding order statistics. Thus the
probability density function (pdf) of X,.., (1 <r <n) is given by:

frn (@) = G [FOOT 1 = FO)]"f(x), 0<x <o, (3.6)

where Crp = m
The joint density function of order statistics X,.,and X;., (I <r <s <n) is given by
frsn (@ Y) = Cran[FOOTTHFO) = FOOI ™7 [1 = FON]"*H(Y) f(x), 0 <x<y< oo,

_ n!
where Crsm = GDis—r—Ditn—s)" @.7)

The single moments of order statistics X,..,(I <r <n) are given by

Q o
O = E(XK,) = [ x* frm ()dx +fP1 xk £ ()dxk=0,12,...... (3.8)
Similarly, the product moments of X,..,, and X,., (1 <r <s <n), are given by
. i Q Q . 0 poO G
WO = B Xin) = [0 [ ¥ frsn Co yddydx + [ [ Y o0 (, y)dydx, (3.9)
j,k=012,.....

3.1 K-th moment
The k-th moment of the mid — truncated two-parameter Lindley distribution can be obtained using(2.6) and is
given by:
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= Q — 1 P. _
W= ZG(Q ) [QlkG(Ql —kJ A G(x)dx] t ey [”(k) — PGP +k [T G (x )dx]
] S S PN ( O Q1 k-1 k P kot
~2 7 2a- G(P ) [ PEG(P)] - 26(Q1 )f GO)dx+ 2(1-6(P, ))f G(x)dx.

Substituting the value of G(x) from equation (3.2) and solving, we get

k
=%, 1 16 _
Ml =5 o G(P 5 MO = PG (P)]
1_1¢ 7(k+1,201) P1_1y¢ 7(k+1,AP1)
zg(Ql)[k lkljf(k’/wl)'F (+ai) }] 2(1— G(Pl))[k lkl}'(k‘/lpl)+ (+ad) }]’ (3'10)

where y(a,b)= fob e * x%~Ldx , is the lower incomplete gamma function and can be obtained using tables
given by Pearson(1965).

To investigate the effect of the parameters o andAion the density function of the mid-truncated two-parameter
Lindleydistribution,we have computedmeans, variances, skewness and kurtosis for different values of the
parameters, takingQ,= 2.0 and P;= 3.0 ,which are presented in following Tables 3.1 and 3.2.

Table 3.1
a=35Q,=2.0P; =3.0
A Mean Variance Skewness(f1) Kurtosis(B2)
1 2.4431 3.6289 0.3037 2.8076
15 2.1728 2.8057 0.0517 1.8701
2 2.0212 2.5338 0.0099 1.4955
2.5 1.9219 2.418 0.0022 1.3165
3 1.8522 2.3603 6.03E-04 1.2185
Table 3.2
A=25Q;=2.0,P, =3.0
A Mean Variance Skewness(f1) Kurtosis(B2)
1 1.9592 2.3637 0.0017 1.3546
2 1.9358 2.4029 0.0021 1.3314
4 1.9192 2.42 0.0022 1.3135
7.5 1.909 2.4237 0.0022 1.3015
10 1.9056 2.4236 0.0022 1.2972

3.2 Moment generating function and characteristic function
The moment generating function of themid — truncated two-parameter Lindley distribution canbe
obtained using (2.7) and is given by:

_e tQ1 01 xt
M ( ) ZG(Ql)f G(X) dx+ 2(1- G(P ))
etQ1

= - - _ LtP Q1 _xt P1 ¢
T2 20— G(P))[M(t) e G(P)] - zc;(Q)f e Gx)dx+5 G(P))f e™ G(x)dx.

Substituting the value of G(X) = 1—(122)e~**from (3.2), and solving we get

[M(©) = eP1G(P) +t f" e G(x) dx]

" _eth P £ 010-0)
M () =+ 72(1 sy M@®) —e 1G(P1)]—ZG(Q )[(e e R TR D (HM)y(w—t)Ql)]

v JeetPr — 1) — L (p—P10—1) _

2(1-G(PD) [( B A  C D) = oty @0 t)Pl)] (3.11)

where y(a, b)= fob e ™ x%1dx , is the lower incomplete gamma function and can be obtained using tables

given by Pearson (1965).
Similarly, the characteristic function of the mid-truncated two-parameter Lindley distribution can be obtained.

4. Recurrence relations for single moments of order statistics from mid-truncated two -
parameter Lindley distribution
In this section we shall derive recurrence relations for single moments of order statistics frommid-
truncated two-parameter Lindleydistribution.
Lemma 4.1:In usual notations, for amid-truncated distribution,we have, for k =1,2,3,...and1<r <n,

B~ =CID S T (F) T (1 - F ()"
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kT (F) T (- F@) T M ax - () @ -PH1 (41)
Proof:Using (3.8), we get
) =1 ®, =G [ PG (1 = F@))" T f ) det o fy 2 F 1 (1 = F())" f(2) dx

n-— r+1

Q1
—Cy s f G2 (1 = FGO)" ™ () dx = €y f A FGOT2(1 = F(O))' ™ f () dx
0 Py

= (M DU Fe (1= F@)' ™ fFefF () = (r = DY dx
+ f;j xkF(x)r—Z(l - F(x))n—rf(x){nF(x) —(r—1D}dx]. (4.2)
n-r+1

Let p(x) =—(F(x))" "' (1 = F(x))

Differentiating both sides with respect to x, we get

O = (FO)Y (1= F()" F@MFR) - (r = 1}, (4.4)
On using (4.4),equation(4.2) becomes

ui"g W= CID [ (e2dx + f 1k (22 dx |

(oD It peo1gt — ke [ x4 plydx + [ ()], — k fj % pla)d]

_1) Q% (@) = P* (P = k [ x5 p(o)dx — ke [ x4 pla)dx] (45)
Now, since F(Q;) :%and F(P) = % therefore, from (4.3), we havep(Q;) = ¢(P;) = —(%)”.
Substituting the values of ¢(x),p(Q;) ande(P;) in (4.5), itleads to (4.1).

(4.3)

Lemma4.2:lffor ] <r<mandk=1,2,...,

18 = (7D S F @) (L - Feo) T dx, (4.6)
then,it may be written as
1(- = -1 (k+t,iQ1) (“7)
5 T T Y () () () LA >,
and
,(k>_
n j-1 i
. n—1\/j—1\/ — 1\ /i A N\ ylk+t2i0Q;)
Z =D (ZQ)} 1(1 1>(r—1)( i )(t)(a/1+1) (ke = 2<r<n
j=r i=0 t=0 L (4.8)
Ll m—1yi 2 A\ yk+t,2Q,) B
l\ ;;(_1) ST 1( i )(t)((mﬂ) (A<t 1 P TEm

where y(a,b)= fob e * x%1dx , is the lower incomplete gamma function and can be obtained using tables

given by Pearson (1965).
Proof:Relations in (4.7) and (4.8) (for r = n) may be proved by following exactly the same steps as those in
proving (4.8)(for 2 < r < n), which is presented below.

Expanding (1 — F(x))™ "binomially in powers of F(x)and then substituting the same in (4.6), we get
for2<r<n,

(k) (:-1 })Z e 1) (n T) J‘Ql k— 1(F(x))l+r 1dx.

= (’:_1) S (1 () 7 ()Y Tt
Substituting the value of F(x)from (3.4),we get

(k) _ i—r (n=1\ (j- 1 Qo k-1 Lraiiin) ,—ax) 71
Ir:n_ }1:7‘(_1)] T(] 1) (ZQ)] lf (1 T 1tai ) dx

Expanding (1 — (”l‘ﬁi’j")e"l")] binomially, we get
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Irgkn) :Z]T'l=r Zji:ll(_l)j—rﬂ' (%)j—l( ) (] 1) le k— 1(1+10:-/}1+le) e~ Aix dx. (4.9)

Further, expanding (124t

forthecase 2 <r <n.

)i =(1+Z 4) binomially and solving the integral, we get the desired result (4.8)

Theorem 4.1:Fork > 0,4 > 0,a4 > —1,we have

(k+1) _ k+1 & ®)  (k+1)(A+4a) 1) 20-1 (k) (k+1)
1m k (ﬁ_a)uln-l_Tuln +(k+1)( )[ i + 1
k+1 1 k Q,k*1_ p k1
~Egle@n s @) @10

where the values of Il(:n)are given in (4.7).
Proof: Relation in (4.10) may be proved by following exactly the same steps as those in proving Theorem 4.2
which is presented next.

Theorem 4.2:Forl<r <n, k> 0, > 0,a4 > —1, we have
ka1) _k+1 K &) k+1D)A+i2)  g—1 (k+1) k+1 (k)
WD = Ga o, T“( i
20-1 (k) (k+1) k+1 k k+1_ p k+1
+k+ 1) () [ +Im =220 5 [a(@-PF) + & @ -pR), (411)

where the values of Ir ., for different values of r, are given in (4.8).
Proof:Using (3.5) in (4.1), consider

k (k) k k+1 (k+1)
(X(]..l( ) — r 1in— 1) + m(l"l( ) — Iler—l:n—l

= (O[O P ) T (- F@) @0 < {(220) + ) o) d

+e [y (F Qo) (1 —F@)" (@ + 0 52 £ (0 dx
_Zin{a(Qlk_Plk) + = (Q1k+1 p k+1)}

KO+ k-1 & LBk (ZQ 1) ) [ Sk (F(x))r—1(1 —F(x)"  (a+ x)dx]

2 M
_(n—l) [ (05~ P) + —— k+1 (Q, 1= p k¥t )]

1
k(1+/1a) u(k 1) 4k Ll(k)+k(ZQ 1)[ Ir({() I(k+1) ( [a(Q1 _Plk)+ — (Q1k+1_P1k+1)]_
On 5|mpI|f|cat|on We get
(k) (k+1)
(a’_n_g_)u —ap r —1mn— 1 k+1 (u(k+1) ur—-::n—l
@uﬂf D+ k(@) [l + 15] = 02D 5 [a(@i*- P2 + 25 @F*1- P, (412)

where the values of Ir .. » for different values of r, are given in (4.8).Rearrangement of terms in (4.12) leads to
the desired result in (4.11).

5. Recurrence relations for product moments of order statistics from mid-truncated two-
parameterLindley distribution
Lemmab5.1: For I <r <s <n,and j, k > 0,we have

HIR =Wl =Gk Jg [Py I GOY T FO) = FGOI T 1 = FO)I'** f () dydx

T,sin l’J"r,s—lzn

+k fy [Ty UF@) () = P71 = FO)" = f(x)dydx
0 () e 1)( Dix 2 [FEI 1 = F)ls =1 f(x)dx], (5.1)

2
where C; ., =

r=D!(s—r— l)l(n —s+1)!
Proof:Using equation (3.9),we have
po R u(/' k)=

r,sm

rs 1n

m <[ [2 3 Y FOOT T F () = FOOlS ™11 = FO)I" £ () f () dydx
+fp1 S Yy [FQOT M F(y) — F)IS 11 = FO)I" ™ f () f () dydx]

e[ [P YHIF @I FG) = FOOPT (1 = FO) P (0 () dydx
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+ 770 YOI U F ) — FQI2[1 = FO)" 1 £ (0)f (v)dyd]
=Can [ [ Y [FQOTF(y) = FGOI 2 [1 = FO)"* F O£ (v)
x{(n —s+ 1)(F(y) F(x)) —(s—r— 1)(1 - F(y))}dydx
+f J7 2 YR FQOTHF(y) = F)I 2 [1 = FO)I"* () f ()

x {(n —s+DFQ) -FXx) — (s —r—1D(1 - F(y))}dydx]
= Canl [2 0 Y IFCOT T F () = FEOF T2 [1 = FOI"* F()f ()
x{n—=rFly)—(n-s + 1)F(x) —(s—r—1}dydx

f f Y FQT L FG) = FGOT2[1 = FO)™ FGOf ()

<~ 1)P() — (1= 5 + DPGO) = (s -7 — D)dydx], (52)
Let

pxy)=—[F) = F)I* "1 = F()]"—*. (5.3)
Then,

WD = —(s =1 = DIFO) = FEPT2[1 = FOI" ()

+(—s+ DIFQ) = FI 7' [1-FOI"*f()
=[FO) = FOP T [1 = FOII"*fW)[(n = nF@) = (n —s + DF(x) — (s =7 = D]. 5.
Putting the above value in (5.2), we get '

uU 9 =00, = Gl [ Y IF @Y T 2 fCodydx + [ [ yFIF GO 50 £ () dydx]

T,sin I""r,s—l:n

=Canlly H FCOT ([ y* 2222 dy) f()dx + [ 2 [FGOV T ([ 9 252 dy) f(x)dxl. (55)

. do(x,
Now, Con5|derfo1 yk %d}'

= Q1* p(x, Q) + K[ Y TIF () = FGOP L [1 = F)]"~*lay. (56)
From equations(5.3) and (3.4), we have

s—r—1 n—s+
o000 = —(2-F) (37 (5.7)
Putting (5.7) in equation (5.6), we get
[ Y4 2D dy = [P YU F () = FEPT 1= FO) ™y
—0 -2 F@r () (58)
Also,
[7 7 2R dy = k[ YEF ) = FeOF ™ [1 = FO)I"™*dy, (5.9)

Putting (5.8) and (5.9) in equation (5.5), we get
MO — OB, = L [Tk [2 YR F () — FOP T [1 = F)]"—*+dy

r,s—1n
~Qt 1 - 2F@I 1 (D) Y Goda
o A FT ke [y FG) = FEIF ™ [1 = FO)]" 1 dy}f (x)dx]
= Clanlk [ [2 Iy FQOY T F () — FOP T 1 = FO)I" ™+ f (x)dydx
e [ [7 Ry HFCOITHFG) = FOOITTHL = FO)I" ™+ f (x)dydx

3 (1)n—r f()Ql xJ Qlk[l _ ZF(x)]S_T_l[F(x)]r_lf(x)dx]. (5.10)

2
Considering the last term of the above equation, and expanding ((1 — F(x)) — F(x))*~"'hinomially and

simplifying, we get the desired result (5.1).

Lemma5.2:1f forj> 1

5@ b)=[ ¥ [F()1[1 = F()] f (x)dx, (5.11)
where f(x) and F(x) are the pdf and cdf, respectively, of a general mid-truncated distribution,

then, it can be rewritten as

5@ b)=5—o(2) (= 1) [2 2 [F ()] f (x)dx
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= Zh=o(y) (=" [ (a +w, 0). (5.12)
Proof:Considering R.H.S of (5.11) and expanding [1 — F(x)]?binomially we get the desired result.

Lemma 5.3: Formld truncated two-parameter Lindley distribution defined in (3.3),]; (a, 0) can be written as

a+ =J

5@0=(%)"" Zico (%) (-1 Bo(D) T o

x|anj +h+1,20,(1+ 9)) +%ﬁf“’” (5.13)
wherey(a, b)= fob e x*dx , is the lower incomplete gamma function and can be obtained using tables
given byPearson (1965).

Proof: Using (5.12) for b = 0 and substituting in it the values of f(x) and F(x) from (3.3) and (3.4), respectively
for mid-truncated two-parameter Lindley distribution and simplifying,we get the desired result (5.13).

Lemma5.4:lffor / <r<s<mandj, k>0,

15 = [ [y T FEITHFG) = FEOFT ™ 1 = FO)"f (x)dydx, (5.14)
where f(x) and F(x) are pdf and cdf respectively, of a general mid-truncated distribution,
then it can be rewritten as

Ir(]skn): sT- 1(s T— 1)2 (n s)( 1)s—r—ttm- 1f01 lex; k=1 [F ()]~ 2 [F ()] ™ dydx

=5 1(5 - 1)2 () (DS (s — 12,14 m), (5.15)
where
Tuw(a b) =[2 [% x4y [FCOI[F3)]P f(x)dydx. (5.16)

Further, for mid-truncated two-parameter Lindley distribution defined in (3.3),T, ,,(a, b) can be simplified as

d
Tu(@b)=G5)" 2o Zieo (-1 () () oo
X[({v+d + 1,4cQy) — (v + d)V)I,(a, 0)

vtd ¢
+(v+d)!;(/1;) ﬁ(zQ) Z( )(_ )fZ( )(

;/(u+t+e+2 lQl(a+c+1))}]
Ala+c+1) !

1
X(A(a+c+1))u+t+e+1
where I, (a, 0) is defined in (5.13) and y(a, b )= fob e ™* x*dx , is the lower incomplete gamma function.

Proof: Substituting the values of f(x) and F(x) from (3.3) and (3.4) in (5.16) and solving the integral we get the
desired expression in (5.17).

{a7(u+t+e+1,/1Q1(a+c+1))+ (5.17)

Theorem 5.1: For / <r < s <n and j, k > 0,we have for mid-truncated two-parameterLindley distribution
Gk+1) — k+1 G.k) k _ (k+1)(1+ar) G.k—1) G.k+1) k+1 (jk)
H ( ) (A(n —s+1) 0() * H *H ta

T,sin k T,sm ,12(7[_54_1) T,sm r,s—1m k u’r,s—l:n
* 2Q-1 Je Je+1
+Crsn[k( )( Ir(]sn) +Ir(]sn+ ))
1\~ " kQ —r— i . ,
-() Ql"( kjl)zs T () = Ls— 7 —i = D], (5.18)
S ! G k;
where Cg., = DD b I; (a, b) for arbitrary a and b is evaluated using Lemma 5.3 and I,”;...is
evaluated in Lemma 5.4.

Proof : Using (5.1),we can write

i) Gk G.k+1) _ Uk+1)
U'(ug.s:rz p‘r,s—l:n) k+1(ursn rs 1n)

= Clenlk [ [4 X yE F QT F () = FOOI 11 = FO)I"™** (@ + y) f (x)dydx

+k 0 [7 0y RO F () - F(x)]H-l[l = FO)I"* (@ + y)f (x)dydx
~0 () EE D @+ 00 [ F@IHTL - FEl T (o da. (5.19)
Using (3.5) |n‘(5.19) We get ‘
a (M0 =02 )+ i (RO — o)
= Clanlk S S8 YT F QI THFG) = FGOIF 71 = FO)I™ {22+ (S22 £ (7))

2Q 2Z(aty)

k+1
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x(a +y)f () dydx
+h 7 [7 0y P OY HF ) = FGOFT 1 = FOI™ {£(0) (55222)} (a + y) f () dydx

o'

) ST D

k
k+1

Q1) [ ) [FOOT 11 = F)]* " f (x)dx]

= kA+ed) (Gh-1) 4k Gk
TA2(n—s+1) Frsm A(n—s+1)ur.szn

+ Chanlle (52) [ [ 6y HFCOY THF () = P = FOI"™(a + )f (x)dydx

2

—(O"7 0k (a4 ) 55 () (— 1 x 2 PG — T (odx],

k+1
(5.20)

Rearrangement of terms in (5.20) leads to the desired result in (5.18).
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