E-cordial labeling of Path union of wheel related graphs

Mukund V. Bapat¹

Hindale, Devgad, Sindhudurg, Maharashtra India

1. Abstract: In this paper we discuss e-cordial labeling of path union of wheel related graphs, Pm(G) where G is W_4 , G_4 , W_5 , G_5 , flag of (W_4) given by $Fl(W_4)$, $Fl(W_5)$, $Fl(G_4)$, $Fl(G_5)$ and show that under certain condition they are e- cordial. We also show that the e-cordial labeling of path union is independent of vertex on G used to form the parh union.

Keywords: E-cordial, path union, fusion, edge, vertex, wheel. Gear graph. **Subject Classification:** 05C78

2. Introduction

The graphs we discuss are simple, connected and finite. For terminology and definitions we depend on Graph Theory by Harary[4], Dynamic survey of graph labeling [3]. and West [6]

In 1997 Yilmaz and Cahit [5] introduced a weaker version of edge graceful labeling called E-cordial. The word cordial was used first time in this paper. Let G be a graph with vertex set V and edge set E. Let f be a function that maps E into {0,1}. Define f on V by $f(v) = \sum \{f(uv)/(uv) \in E\} \pmod{2}$. The function f is called as E cordial labeling if $|e_f(0)-e_f(1)| \le 1$ and $|v_f(0)-v_f(1)| \le 1$. Where $e_f(i)$ is the number of edges labeled with i = 0,1 and $v_f(i)$ is the number of vertices labeled with i = 0,1. We also use $v_f(0,1) = (a,b)$ to denote the number of vertices labeled with 0 are a in number and that with 1 are b in number. Similarly $e_f(0,1)=(x, y)$ to denote number of edges labeled with 0 are x in number and that labeled with 1 are y in number. A lot of work has been done in this type of labeling and the above mentioned paper gave rise to number of papers on cordial labeling. A graph that admits E-cordial labeling is called as E- cordial graph. Yilmaz and Cahit has shown that Trees T_n with n vertices and Complete graphs K_n on n vertices are E - cordial iff n is not congruent to 2 (modulo 4). Friendship graph $C_3^{(n)}$ for all n and fans F_n for n not congruent to 1 (mod 4). They observe that a graph with n vertices is not e-cordial if $n \equiv 2 \pmod{4}$. This observation is followed by graphs that we study next. One may refer A Dynamic survey of graph labeling for more details on completed work.

In this paper we discuss path unions of graphs obtained from W_4 , W_5 , G_4 , G_5 , and flag graphs. The ecordial function f is independent of the vertex on G used to fuse on the vertex of path P_m to obtain path union.

3. Preliminaries:

1) **Fusion of vertex**. Let G be a (p,q) graph. Letu $\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-1vertices and at least q-1 edges.[6]. If $u \in G_1$ and $v \square G_2$, where G_1 is (p_1,q_1) and G_2 is (p_2,q_2) graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has p_1+p_2-1 vertices and $q_1 + q_2$ edges. Sometimes this is referred as u is identified with v.

2) **Path union of G** i.e. $P_m(G)$ is obtained by taking a path P_m and m copies of graph G. Fuse a copy each of G at every vertex of path at given fixed point on G. It has mp vertices and mq +m-1 edges, where G is a (p,q) graph. If we change the vertex on G that is fused with vertex of Pm then we generally get a path union non isomorphic to earlier structure. In this paper we define a e-cordial function f that does not depends on which vertex of given graph G is fused to obtain path union. This allows us to obtain path union in which the same graph G is fused with vertices of G, as our choice and the same function f is applicable to all such structures that are possible on $P_m(G)$.

3) **Flag of a graph G**denoted by FL(G) is obtained by taking a graph G=G(p,q). At suitable vertex of G attach a pendent edge. It has p+1 vertices and q+1 edges. We show below in diagram flag of K₄.i.e.Fl (K₄)

4) Wheel graph Wn. Take acycleCn and a vertex w not on Cn. Join every vertex of Cn by an edge each to w.The resultant graph is wheel Wn. Sometimes the same graph is shown by W_{n+1} . It has n+1 vertices and 2n edges. The edges incident with w are called as pokes and vertexw as hub. The other edges that lie on cycle Cn are called as cycle edges.

5) Gear graph G_n . It is obtained from wheel graph Wn .A new vertex is introduced on each cycle edge. Sometimes it is denoted by G_{n+1} . It has 2n+1 vertices and 3n edges.

4. Main Results Proved:

Theorem 4.1: $G = P_m(W_4)$ is e-cordial iff m is not congruent to 2(mod 4). Proof: Wetake a path $P_m = (v_1, v_2, ...v_m)$ and at each of it's vertex fuse a copy of W_4 at a fixed vertex of W_4 . Define a function f:E(G) \rightarrow {0,1} as follows: Label of every edge on path P_m is '0'. Using f we get following three labeled copies of W_4 Type A, Type B and Type C. Of these type A only is E- cordial. We use them all suitably to obtain a labeled copy of G.

Type A Type B Type C 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

On P_m , for vertex v_1 fuse type A label. This is e-cordial follows from fig 4.1 On v_2 fuse type B label. At this stage label distribution is $v_f(0,1) = (6,4)$, $e_f(0,1) = (8,9)$. Note that it is not e-cordial. At

 v_3 fuse type C label. At this stage label distribution is $v_f(0,1) = (7,8)$), $e_f(0,1) = (13,13)$.At v_4 use Type B label. The label distribution is $v_f(0,1) = (10,10)$), $e_f(0,1) = (17,18)$.At v_5 use Type A label. Label distribution is $v_f(0,1) = (13,12)$), $e_f(0,1) = (22,22)$.For i>5 Labeling is done in the following way.

At vertex v_i of path P_m fuse type C label if $i \equiv 2 \pmod{4}$. Label distribution is v_f(0,1) =

 $(14+10x,16+10x)), e_{f}(0,1) = (27+18x,26+18x)$ for i = 4x+2.x = 2,3,...

At vertex v_i of path P_m fuse **type B** label if $i \equiv 3 \pmod{4}$. Label distribution is $v_f(0,1) =$

 $(17+10x,18+10x)), e_{f}(0,1) = (31+18x,31+18x)$ for i= 4x+3; x= 2,3 ...

At vertex v_i of path P_m fuse **type A** label if $i \equiv 0 \pmod{4}$. Label distribution is $v_f(0,1) =$

 $(20+10x,20+10x)), e_{f}(0,1) = (36+18x,35+18x)$ for i= 4x, x= 2,3,...

Atvertex v_i of path P_m fuse **type B** label if $i \equiv 1 \pmod{4}$. Label distribution is v_f(0,1) =

 $(23+10x,22+10x)), e_f(0,1) = (40+18x,40+18x)$ for i = 4x+3.x = 2,3, ...

That is here onwards sequence of Type C, Type B, Type A, Type B is repeated . The function **f** is not vertex sensitive in the sense that which vertex on W_4 is used to form path union is not important. #

Theorem 4.2: $G = P_m (G_4)$ is e-cordial iff m is not congruent to 2(mod 4).

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of G_4 at a fixed vertex of G_4 . Define a function f:E(G) $\rightarrow \{0,1\}$ as follows: Label of every edge on path P_m is '0'. Using f we get following three labeled copies of G_4 Type A, Type B and Type C. Of these type A only is E- cordial. We use them all suitably to obtain a labeled copy of G

On P_m , for vertex v_1 fuse **type A** label, On v_2 fuse **type B** label. The label number distribution for $P_2(G_4)$ is $v_f(0,1) = (8,10)$, $e_f(0,1) = (13,12)$. At this stage $P_m(G)$ is not e-cordial.

At vertex v_3 fuse **type C** label. The label number distribution for $P_3(G_4)$ is $v_f(0,1) = (13,14)$, $e_f(0,1) = (19,19)$.

on P_m fuse **type A** label if $i \equiv 1 \pmod{4}$. Label distribution is $v_f(0,1) = (23+18x, 22+18x)$, $e_f(0,1) = (32+26x, 32+26x)$.; i = 4x + 1

At vertex v_i on P_m fuse **type B** label if $i \equiv 2 \pmod{4}$. Label distribution is $v_f(0,1) = (26+18x, 28+18x)$, $e_f(0,1) = (39+26x, 38+26x)$. G is not e-cordial; i = 4x + 2

At vertex v_i on P_m fuse **type C** label if $i \equiv 3 \pmod{4}$. Label distribution is $v_f(0,1) = (31+18x, 32+18x)$, $e_f(0,1) = (45+26x, 45+26x)$; i = 4x + 3

At vertex v_i on P_m fuse **type C** label if $i \equiv 0 \pmod{4}$. Label distribution is $v_f(0,1) = (36+18x, 36+18x)$, $e_f(0,1) = (51+26x, 52+26x)$; i = 4x + 4. Thus the graph is not e-cordial if $m \equiv 2 \pmod{4}$. The function **f is not vertex** sensitive in the sense that which vertex on W_4 is used to form path union is not important. (one may use hub vertex or cycle vertex to obtain path union). The same f is applicable and gives us e-cordial labeling with same constraints.

Theorem 4.3: $G = P_m (W_5)$ is e-cordial iff m is not congruent to 1(mod 2).

Proof: We take a path $P_m=(v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of w_5 at a fixed vertex of W_5 .Define a function f:E(G) \rightarrow {0,1} as follows: Label of every edge on path P_m is '0'.Using f we get following two labeled copies of W_5 Type A, Type B. We use them suitably to obtain a labeled copy of G

At vertex v_i fuse type A label if $i = 1 \pmod{2}$. At vertex v_i fuse type B label if $i = 0 \pmod{2}$ The label number distribution for $P_{2x+1}(G_4)$ is $v_f(0,1) = (2+6x,4+6x)$, $e_f(0,1) = (5+11x,5+11x)$. Where i = 2x+1, x = 0,1,2.. The label number distribution for $P_{2x}(G_4)$ is $v_f(0,1) = (6x,6x)$, $e_f(0,1) = (10+11x,11+11x)$. Where i = 2x, x = 1,2.. Thus the graph is e-cordial. The function f is not vertex sensitive in the sense that which vertex on W_5 is used to form path union is not important (we can use hub vertex or cycle vertex to obtain path union). The same f is applicable and gives us e-cordial labeling with same constraints. **Theorem 4.4:** Let G'=fl(W_4). $G = P_m(G')$ is e-cordial iff m is not congruent to 1(mod 2).

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of G' at a fixed vertex of G'. Define a function f: $E(G) \rightarrow \{0,1\}$ as follows: Label of every edge on path P_m is '0'. Using f we get following two labeled copies of G' Type A, Type B. Of these none is E- cordial. We use them suitably to obtain a labeled copy of G.

At vertex v_i of P_m use type A labeling if $i\equiv 1 \pmod{2}$ and Type B labeling otherwise. The label number distribution is $v_f(0,1) = (2+6x,4+6x)$, $e_f(0,1) = (4+10x,4+10x)$ when m = 1+2x, x = 0, 1, 2, ... if m is of type 2x, $x=1,2,..v_f(0,1) = (6x,6x)$, $e_f(0,1) = (9+10x,10+10x)$. Thus the graph is e-cordial iff $m \equiv 0 \pmod{2}$.

Theorem 4.5: Let $G'=fl(G_4)$. $G=P_m(G')$ is e-cordial iff m is not congruent to 1(mod 2).

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of G' at a fixed vertex of G'. Define a function f: $E(G) \rightarrow \{0,1\}$ as follows: Label of every edge on path P_m is '0'. Using f we get following two labeled copies of G' Type A, Type B. Of these none is E- cordial. We use them suitably to obtain a labeled copy of G.

At vertex vi of P_m use type A labeling if $i\equiv 1 \pmod{2}$ and Type B labeling otherwise. The label number distribution is $v_f(0,1) = (6+10x,4+10x)$, $e_f(0,1) = (5+13x,7+13x)$ when m = 1+2x, x = 0, 1, 2, ... if m is of type 2x, $x=1,2,...v_f(0,1) = (10x,10x)$, $e_f(0,1) = (13x-1,13x)$. Thus the graph is e-cordial iff $m \equiv 0 \pmod{2}$. Theorem 4.6: Let $G = P_m(G_5)$ is e-cordial iff m is not congruent to $2 \pmod{4}$.

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of G_5 at a fixed vertex of G_5 . Define a function f:E(G) $\rightarrow \{0,1\}$ as follows: Label of every edge on path P_m is '0'.Using f we get following two labeled copies of G_5 Type A, Type B. Of these Type A is E- cordial. We use them suitably to obtain a labeled copy of G.

At vertex v_i of Pmfuse type A labeling if $i \equiv 1, 3, 4 \pmod{4}$ and Type B labeling if $i \equiv 2 \pmod{4}$. The label number distribution is $v_f(0,1) = (5+22x,6+22x)$, $e_f(0,1) = ((7+32x,8+32x))$ when m = 1+4x, x = 0, 1, 2, ... If m is of type 4x, x=1,2,... Then, $v_f(0,1) = (22x,22x)$, $e_f(0,1) = (32x-1,32x)$.

If m is of type 4x+2, $x=0,2,...v_f(0,1) = (12+22x,10+22x)$, $e_f(0,1) = (15+32x,16+32x)$.

If m is of type 4x+3, $x=0,2,..v_f(0,1) = (17+22x,16+22x)$, $e_f(0,1) = (23+32x,24+32x)$.

Theorem 4.7: Let $G = P_m(Fl(G_5))$ is e-cordial iff m is not congruent to $2 \pmod{4}$.

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of $Fl(G_5)$ at a fixed vertex of G_5 . Define a function $f:E(G) \rightarrow \{0,1\}$ as follows: Label of every edge on path P_m is '0'. Using f we get following labeled copy of $Fl(G_5)$ Type A, Type B. Of these none is E- cordial. We use them suitably to obtain a labeled copy of G.

We Start with label A by fusing it with vertex v_i of path P_m for $i \equiv 1 \pmod{2}$ and Type B label for $i \equiv 0 \pmod{2}$. The resultant graph is e-cordial. The label number distribution is $v_f(0,1) = (6m,6m)$ for all m and $e_f(0,1) = (6m,6m)$.

((8+17x,8+17x)) when m = 1+2x, x = 0, 1, 2, ... and $e_f(0,1) = ((17x-1,17x))$ when m = 2x, x = 1, 2, ...

Theorem 4.8: Let $G = P_m(Fl(W_5))$ is e-cordial iff m is not congruent to $2 \pmod{4}$.

Proof: We take a path $P_m = (v_1, v_2, ..., v_m)$ and at each of it's vertex fuse a copy of $Fl(W_5)$ at a fixed vertex of W_5 . Define a function f: $E(G) \rightarrow \{0,1\}$ as follows: Using f we get following labeled copy of $Fl(W_5)$: Type A, Type B. Of these Type A is E- cordial. We use them suitably to obtain a labeled copy of G.

Label of every edge on path P_m is '0'.At vertex v_i of P_m fuse type A labeling if $i\equiv 1,3,4 \pmod{4}$ and Type B labeling if $i\equiv 2 \pmod{4}$. The label number distribution is $v_f(0,1) = (3+14x,4+14x), e_f(0,1) = ((5+24x,6+24x))$ for m = 1+4x, x = 0,1,2,.. The label number distribution is $v_f(0,1) = (8+14x,6+14x), e_f(0,1) = ((11+24x,12+24x))$ for m = 2+4x, x = 0,1,2,.. The label number distribution is $v_f(0,1) = (11+14x,10+14x), e_f(0,1) = ((17+24x,18+24x)), for <math>m = 3+4x, x = 0,1,2,..$ The label number distribution is $v_f(0,1) = (11+14x,10+14x), e_f(0,1) = ((17+24x,18+24x)), for <math>m = 3+4x, x = 0,1,2,..$ The label number distribution is $v_f(0,1) = (14x,14x), for m = 4x, x = 1,2,..$ Further $e_f(0,1) = ((5+6(m-1),6+6(m-1)))$ for all m = 1, 2, ..

Conclusions:

In this paper we study path union of wheel related graphs and show that under certain conditions these graphs are e- cordial.

We show that

- 1) $P_m(W_4)$ is e-cordial iff m is not congruent to $2 \pmod{4}$.
- 2) $P_m(G_4)$ is e-cordial iff m is not congruent to $2 \pmod{4}$.
- 3) $P_m(W_5)$ is e-cordial iff m is not congruent to $1 \pmod{2}$.
- 4) $G = P_m (fl(W_4))$ is e-cordial iff m is not congruent to 1(mod 2).
- 5) $G'=fl(G_4).G=P_m(G')$ is e-cordial iff m is not congruent to 1(mod 2).
- 6) $G = P_m (G_5)$ is e-cordial iff m is not congruent to 2(mod 4).
- 7) $G = P_m (Fl(G_5))$ is e-cordial iff m is not congruent to $2 \pmod{4}$.

8) $G = P_m (Fl(W_5))$ is e-cordial iff m is not congruent to 2(mod 4).

It is important to note that all path unions $P_m(G)$ of graph G discussed above are not vertex sensitive in the sense that we can choose any vertex on G to form $P_m(G)$ and the resultant graph is e-cordial. We don't have to make any change in already defined function f.

References:

- [1]. Bapat M.V. Ph.D. thesis, University Of Mumbai, 2004
- [2]. E-cordial labeling of bull related graphs. 289-293, vol-3 issue 2,IJSAM.
- [3]. Joe Gallian Dynamic survey of graph labeling 2016
- [4]. Harary, Graph Theory, Narosapublishing, New Delhi
- [5]. Yilmaz, Cahit, E-cordial graphs, Ars combina,46,251-256.
- [6]. Introduction to Graph Theory by D. WEST, Pearson Education Asia.