Volume – 03, Issue – 05, May 2018, PP – 50-54

One point union cordiality of shel graph

Mukund V. Bapat¹ Hindale, Tal: Devgad, Sindhudurg Maharashtra, India

Abstract: In this paper we discuss cordial labeling of shell related graphs. We show that $tail(s_4, P_2), G^{(k)}$ where $G = tail(s_4, P_3), tail(s_4, 2-P_2)$ are cordial graphs

Keywords: cordial, labeling, shell graph, one point union. **Subject Classification:** 05C78

2. Introduction:

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6], A dynamic survey of graph labeling by J. Gallian [8] and Douglas West.[9].I. Cahit introduced the concept of cordial labeling[5].f:V(G) \rightarrow {0,1} be a function. From this label of any edge (uv) is given by |f(u)-f(v)|.Further number of vertices labeled with 0 i.ev_f(0) and the number of vertices labeled with 1 i.e.v_f(1) differ at most by one .Similarly number of edges labeled with 0 i.e. e_f(0) and number of edges labeled with 1 i.e. e_f(1) differ by at most one. Then the function f is called as cordial labeling.Cahit has shown that : every tree is cordial; K_n is cordial if and only if $n \leq 3$; K_{m,n} is cordial for all m and n; the friendship graph C₃^(t) (i.e., the one-point union of t copies of C₃) is cordial if and only if t is not congruent to 2 (mod 4); all fans are cordial; the wheel W_n is cordial if and only if n is not congruent to 3 (mod 4).A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8].

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p,q) graph. letu \neq v be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has p-1vertices and at least q-1 edges.[9].

3.2 A tail graph (also called as antenna graph) is obtained by fusing a path p_k to some vertex of G. This is denoted by tail(G, P_k). If there are t number of tails of equal length say (k-1) then it is denoted by tail(G, tp_k). If G is a (p,q) graph and a tail P_k is attached to it then tail(G, P_k) has p+k-1 vertices and q+k-1 edges.

3.3 $G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $|V(G_{(k)})| = k(p-1)+1$ and |E(G)| = k.q

3.4 Shell graph S_n is obtained from cycle Cn by taking n-3 concurrent chords from any one vertex on Cn say v to n-3 vertices of Cn which are non-adjacent to v.It has 2n-3 edges and n vertices.

4. Theorems proved:

4.1 Theorem.

 $G^{(k)}$ is cordial where $G = tail(s_4, P_2)$

Proof: Define a function $f:V(G) \rightarrow \{0,1\}$ as follows. It introduces the types of labeling units as given below. We combine them suitably to obtain a labeled copy of $G^{(k)}$. There are two cases depending on where the P_2 is attached on S_4 .

Case 1. P2 is attached at one of the two 3-degree vertices of S4.

We can take one point union at vertices 'a', 'b', 'c' or 'd', see fig 4.1, to produce structure1 to structure 4 respectively. All these structures will be pairwise non-isomorphic.

Volume – 03, Issue – 05, May 2018, PP – 50-54

In structure 1 type B is used repeatedly .The one point union is taken at vertex 'a' on it for all k of $G^{(k)}$. In structure 2 type B is used repeatedly .The one point union is taken at vertex 'b' on it for all k of $G^{(k)}$. In structure 3 type B is used repeatedly .The one point union is taken at vertex 'c' on it for all k of $G^{(k)}$. In structure 4 type A is used repeatedly .The one point union is taken at vertex 'd' on it for all k of $G^{(k)}$. The resultant number distribution for all four structures is $v_f(0,1)=(2k,2k+1)$, $e_f(0,1)=(3k,3k)$ for all k.

case $2: P_2$ is attached at one of the two 2-degree vertices of S_4 .

We take one point union on any of the vertices 'a', 'b', 'c' or 'd'(see fig 4.4 above). In that case we get structure1,structure2, structure3 and structure 4 respectively. All these structures will be pairwise non-isomorphic.

In structure 1 type B is used repeatedly . The one point union is taken at vertex 'a' on it for all k of $G^{(k)}$.

In structure 2 type B is used repeatedly . The one point union is taken at vertex 'b' on it for all k of $G^{(k)}$.

In structure 3 type B is used repeatedly . The one point union is taken at vertex 'c' on it for all k of $G^{(k)}$.

In structure 4 type A is used repeatedly . The one point union is taken at vertex 'd' on it for all k of $G^{(k)}$.

The resultant number distribution for all four structures is $v_f(0,1)=(2k,2k+1)$, $e_f(0,1)=(3k,3k)$ for all k. Thus in both cases all structures possible on one point union of tail(S₄,p2) are cordial.

#4.2 Theorem.

 $G^{(k)}$ is cordial where $G = tail(s_4, P_3)$

Proof: Define a function $f:V(G) \rightarrow \{0,1\}$ as follows. It introduces ffive types of labeling units as given below. We combine them suitably to obtain a labeled copy of $G^{(k)}$. There are two cases depending on where the p_2 is attached on S_4 .

We take one point union on any of the vertices 'e', 'a', 'b', 'c' or 'd'(see fig 4.7 above).

In that case we get structure1, structure2, structure3, structure 4 and structure 5 respectively.

All these structures will be pairwise non-isomorphic.

In structure 1, type C and type A are used repeatedly.

The one point union is taken at vertex 'e' on it. Type C is used as i^{th} copy if $i \equiv 1 \pmod{4}$ and copy A is used at i^{th} copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 2, type C and type B are used repeatedly .T

he one point union is taken at vertex 'a' on it. Type C is used as i^{th} copy if $i \equiv 1 \pmod{2}$ and copy B is used at i^{th} copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 3, type C and type B are used repeatedly .The one point union is taken at vertex 'b' on it.

Type C is used as ith copy if $i \equiv 1 \pmod{4}$ and copy B is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 4, type C and type B are used repeatedly .

The one point union is taken at vertex 'c' on it. Type C is used as i^{th} copy if $i \equiv 1 \pmod{4}$ and copy B is used at i^{th} copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 5, type E and type D are used repeatedly.

The one point union is taken at vertex 'd' on it. Type E is used as ith copy if $i \equiv 1 \pmod{2}$ and copy D is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

Volume – 03, *Issue* – 05, *May* 2018, *PP* – 50-54

The label number distribution for structure 1 is as follows: On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x =0,1,2.. And if k=2x,x=1,2,.. we have on vertices $v_f(0,1)=(1+5x,5x)$ and on edges $e_f(0,1)=(7x,7x)$ if kis of type k=2x+1, x =0,1,2..

The label distribution for structure 2, structure 3 and structure 4 is as follows: On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x=0,1,2..And if k=2x,x=1,2,..we have on vertices $v_f(0,1)=(5x,5x+1)$ and on edges $e_f(0,1)=(7x,7x)$ if k is of type k=2x+1, x=0,1,2..

The label distribution for structure 5 is as follows:On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(4+7x,3+7x)$ if kis of type k=2x+1, x=0,1,2..And if k=2x,x=1,2,..we have on vertices $v_f(0,1)=(5x,5x+1)$ and on edges $e_f(0,1)=(7x,7x)$ if k is of type k=2x+1, x=0,1,2..

Case 2. P_2 is attached at one of the two 3-degree vertices of S_4 .

We can take one point union at vertices 'e', 'a', 'b', 'c' or 'd', see fig 4.13, to produce structure 1 to structure 5 respectively. All these structures will be pairwise non-isomorphic.

In structure 1, type C and type A are used repeatedly. The one point union is taken at vertex 'e' on it. Type C is used as ith copy if $i \equiv 1 \pmod{4}$ and copy A is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 2, type C and type A are used repeatedly .The one point union is taken at vertex 'a' on it.Type C is used as ith copy if $i \equiv 1 \pmod{2}$ and copy A is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 3, type C and type B are used repeatedly. The one point union is taken at vertex 'b' on it. Type C is used as ith copy if $i\equiv 1 \pmod{2}$ for all i=1,2,.k, in construction of $G^{(k)}$.

In structure 4, type C and type B are used repeatedly. The one point union is taken at vertex 'c' on it. Type C is used as ith copy if $i \equiv 1 \pmod{4}$ and copy B is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 5, type C and type D are used repeatedly .The one point union is taken at vertex 'd' on it.Type C is used as ith copy if $i \equiv 1 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

The label number distribution for structure 1, structure 2 and structure 5 is as follows:On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x=0,1,2...And if k=2x,x=1,2,...we have on vertices $v_f(0,1)=(1+5x,5x)$ and on edges $e_f(0,1)=(7x,7x)$ if kis of type k=2x+1, x=0,1,2...

The label number distribution for structure 3 and structure 4 is as follows: On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x=0,1,2..And if k=2x,x=1,2,..we have on vertices $v_f(0,1)=(5x,5x+1)$ and on edges $e_f(0,1)=(7x,7x)$ if kis of type k=2x+1, x=0,1,2..

Thus the graph is cordial. #

4.3 Theorem.

 $G^{(k)}$ is cordial where $G = tail(s_4, 2-P_2)$

Proof: Define a function $f:V(G) \rightarrow \{0,1\}$ as follows. It introduces four types of labeling units as given below. Type A and Type B are not cordial while Type C and type D have same label number but different distribution.

Volume - 03, Issue - 05, May 2018, PP - 50-54

We combine them suitably to obtain a labeled copy of $G^{(k)}$. There are two cases depending on where the two copies of p_2 are attached on S_4 .

Case 1 : both p_2 are attached at 2-degree vertex of S_4 .

We take one point union on any of the vertices 'a', 'b', 'c' or 'd'(see fig 4.18 above). In that case we get structure 1, structure 2, structure 3 and structure 4 respectively. All these structures are pairwise non-isomorphic. In structure 1, type C and type A are used repeatedly .The one point union is taken at vertex 'a' on it. Type C is used as ith copy if i=1 (mod4) and copy A is used at ith copy if i= 0 (mod 2) for all i= 1,2, .k, in construction of $G^{(k)}$.

In structure 2, type C and type A are used repeatedly. The one point union is taken at vertex 'b' on it. Type C is used as ith copy if $i \equiv 1 \pmod{2}$ and copy A is used at ith copy if $i \equiv 0 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

In structure 3, type C and type A are used repeatedly .The one point union is taken at vertex 'c' on it.Type C is used as ith copy if $i\equiv 1 \pmod{4}$ and copy A is used at ith copy if $i\equiv 0 \pmod{2}$ for all i=1,2, .k, in construction of $G^{(k)}$.

In structure 4, type D and type B are used repeatedly. The one point union is taken at vertex 'd' on it. Type D is used as ith copy if $i\equiv 1 \pmod{4}$ and copy B is used at ith copy if $i\equiv 0 \pmod{2}$ for all $i_{\overline{1}}$ 1,2, .k, in construction of $G^{(k)}$

The label number distribution is on vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ when k = 2x, x = 0, 1, 2... and when k is of type k = 2x, on vertices we have $v_f(0,1)=(5x, 1+5x)$ and on edges $e_f(0,1)=(7x,7x)$.

Case 2. Two P_2 paths are attached at one of the two 3-degree vertices of S_4 .

can take one point union at vertices 'e', , 'b', 'c' or 'd', see fig 4.6, to produce structure 1 to structure 4 respectively. All these structures will be pairwise non-isomorphic.

In structure 1, type A and type C are used repeatedly. The one point union is taken at vertex 'e' on it. Type A is used as i^{th} copy if $i \equiv 1 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137

Volume – 03, *Issue* – 05, *May* 2018, *PP* – 50-54

In structure 2, type A and typeB are used repeatedly .The one point union is taken at vertex 'b' on it.Type A is used as ith copy if i=1 (mod 2) and copy B is used at ith copy if i= 0 (mod 2) for all i= 1,2, .k, in construction of $G^{(k)}$.

In structure 3, type A and type B are used repeatedly. The one point union is taken at vertex 'd' on it. Type A is used as ith copy if $i\equiv 1 \pmod{4}$ and copy B is used at ith copy if $i\equiv 0 \pmod{2}$ for all i=1,2,.k, in construction of $G^{(k)}$.

In structure 4, type A and type C are used repeatedly. The one point union is taken at vertex 'c' on it. Type A is used as ith copy if $i \equiv 1 \pmod{2}$ for all i = 1, 2, .k, in construction of $G^{(k)}$.

The label distribution for structure 1 and structure 4 is as follows: On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x=0,1,2.. And if k=2x,x=1,2,..we have on vertices $v_f(0,1)=(1+5x,5x)$ and on edges $e_f(0,1)=(7x,7x)$ if kis of type k=2x+1, x=0,1,2..

The label distribution for structure 2 and structure 3 is as follows: On vertices $v_f(0,1)=(3+5x,3+5x)$ and on edges $e_f(0,1)=(3+7x,4+7x)$ if kis of type k=2x+1, x=0,1,2...And if k=2x,x=1,2,...we have on vertices $v_f(0,1)=(5x,5x+1)$ and on edges $e_f(0,1)=(7x,7x)$ if kis of type k=2x+1, x=0,1,2...

Thus the graph is cordial. # Conclusions:We show that $tail(s_4,P_2),G^{(k)}$ where $G = tail(s_4,P_3), tail(s_4,2-P_2)$ are cordial graphs.

References:

- [1]. M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
- [2]. M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]
- [3]. BapatMukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
- [4]. BapatMukund V. Some Path Unions Invariance Under Cordial labeling,accepted IJSAM feb.2018 issue.
- [5]. I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.
- [6]. Harary, Graph Theory, Narosa publishing , New Delhi
- [7]. Yilmaz, Cahit , E-cordial graphs, Ars combina, 46, 251-256.
- [8]. J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
- [9]. D. WEST, Introduction to Graph Theory, Pearson Education Asia.