One point union cordiality of shel graph

Mukund V. Bapat ${ }^{1}$
Hindale, Tal: Devgad, Sindhudurg
Maharashtra, India

Abstract

In this paper we discuss cordial labeling of shell related graphs. We show that tail $\left(\mathrm{s}_{4}, \mathrm{P}_{2}\right), \mathrm{G}^{(\mathrm{k})}$ where G $=\operatorname{tail}\left(\mathrm{s}_{4}, \mathrm{P}_{3}\right)$, tail $\left(\mathrm{s}_{4}, 2-\mathrm{P}_{2}\right)$ are cordial graphs

Keywords: cordial, labeling, shell graph, one point union.
Subject Classification: 05C78

2. Introduction:

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Graph Theory by Harary [6],A dynamic survey of graph labeling by J. Gallian [8] and Douglas West.[9].I. Cahit introduced the concept of cordial labeling[5].f:V(G) $\rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$.Further number of vertices labeled with 0 i. $\mathrm{ev}_{\mathrm{f}}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $\mathrm{e}_{\mathrm{f}}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; K_{n} is cordial if and only if $n \leq 3 ; K_{m, n}$ is cordial for all m and n; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$.A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8].

3. Preliminaries:

3.1 Fusion of vertex. Let G be a (p, q) graph. letu $\neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $\mathrm{p}-1$ vertices and at least $\mathrm{q}-1$ edges.[9].
3.2 A tail graph (also called as antenna graph) is obtained by fusing a path p_{k} to some vertex of G. This is denoted by $\operatorname{tail}\left(G, P_{k}\right)$. If there are t number of tails of equal length say $(k-1)$ then it is denoted by tail $\left(G, p_{k}\right)$. If G is a (p, q) graph and a tail P_{k} is attached to it then $\operatorname{tail}\left(\mathrm{G}, \mathrm{P}_{\mathrm{k}}\right)$ has $\mathrm{p}+\mathrm{k}-1$ vertices and $\mathrm{q}+\mathrm{k}-1$ edges.
$3.3 \mathrm{G}^{(\mathrm{K})}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies.If G is a (p, q) graph then $\mid \mathrm{V}\left(\mathrm{G}_{(\mathrm{k})} \mid=\mathrm{k}(\mathrm{p}-1)+1\right.$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{k} . \mathrm{q}$
3.4 Shell graph S_{n} is obtained from cycle $C n$ by taking $n-3$ concurrent chords from any one vertex on Cn say v to $\mathrm{n}-3$ vertices of Cn which are non-adjacent to v.It has $2 \mathrm{n}-3$ edges and n vertices.

4. Theorems proved:

4.1 Theorem

$\mathrm{G}^{(\mathrm{k})}$ is cordial where $\mathrm{G}=\operatorname{tail}\left(\mathrm{s}_{4}, \mathrm{P}_{2}\right)$
Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. It introduces tho types of labeling units as given below. We combine them suitably to obtain a labeled copy of $G^{(k)}$.There are two cases depending on where the P_{2} is attached on S_{4}.
Case 1. P_{2} is attached at one of the two 3-degree vertices of S_{4}.

Fig 4.1 Tail($\mathrm{C}_{4}, \mathrm{P}_{2}$)

$\mathrm{v}_{\mathrm{f}}(0,1)=(2,3), \mathrm{e}_{\mathrm{f}}(0,1)=(3$

$v_{f}(0,1)=(2,3), e_{f}(0,1)=(3$,

We can take one point union at vertices 'a', 'b', 'c' or 'd', see fig 4.1 , to produce structure 1 to structure 4 respectively. All these structures will be pairwise non-isomorphic.

Volume - 03, Issue - 05, May 2018, PP - 50-54
In structure 1 type B is used repeatedly. The one point union is taken at vertex ' a ' on it for all k of $G^{(k)}$. In structure 2 type B is used repeatedly. The one point union is taken at vertex ' b ' on it for all k of $G^{(k)}$. In structure 3 type B is used repeatedly. The one point union is taken at vertex ' c ' on it for all $\mathrm{k} \mathrm{of}^{(\mathrm{k})}$. In structure 4 type A is used repeatedly. The one point union is taken at vertex ' d ' on it for all k of $G^{(k)}$. The resultant number distribution for all four structures is $v_{f}(0,1)=(2 k, 2 k+1), e_{f}(0,1)=(3 k, 3 k)$ for all k.
case $2: P_{2}$ is attached at one of the two 2-degree vertices of S_{4}.

Fig 4.4 Tail($\mathrm{C}_{4}, \mathrm{P}_{2}$)

Fig 4.5
$v_{f}(0,1)=(2,3), e_{f}(0,1)=(3$

We take one point union on any of the vertices ' a ', ' b ', ' c ' or ' d '(see fig 4.4 above). In that case we get structure1,structure2, structure3 and structure 4 respectively. All these structures will be pairwise nonisomorphic.
In structure 1 type B is used repeatedly. The one point union is taken at vertex ' a ' on it for all k of $G^{(k)}$. In structure 2 type B is used repeatedly. The one point union is taken at vertex ' b ' on it for all k of $G^{(k)}$.
In structure 3 type B is used repeatedly. The one point union is taken at vertex ' c ' on it for all k of $G^{(k)}$.
In structure 4 type A is used repeatedly. The one point union is taken at vertex ' d ' on it for all k of $G^{(k)}$.
The resultant number distribution for all four structures is $v_{f}(0,1)=(2 k, 2 k+1), e_{f}(0,1)=(3 k, 3 k)$ for all k. Thus in both cases all structures possible on one point union of tail($\left.\mathrm{S}_{4}, \mathrm{p} 2\right)$ are cordial.

\#4.2 Theorem.

$\mathrm{G}^{(\mathrm{k})}$ is cordial where $\mathrm{G}=\operatorname{tail}\left(\mathrm{s}_{4}, \mathrm{P}_{3}\right)$
Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. It introduces ffive types of labeling units as given below. We combine them suitably to obtain a labeled copy of $G^{(k)}$. There are two cases depending on where the p_{2} is attached on S_{4}.

Fig $4.10 v_{f}(0,1)=$ $(3,3), e_{f}(0,1)=(4,3)$

Fig $4.11 \mathrm{v}_{\mathrm{f}}(0,1)=$
$(3,3), e_{f}(0,1)=(3,4)$

Fig $4.12 v_{f}(0,1)=$
$(2,4), \mathrm{e}_{\mathrm{f}}(0,1)=(3,4)$

We take one point union on any of the vertices 'e', 'a', 'b', 'c' or 'd'(see fig 4.7 above).
In that case we get structure 1 ,structure 2 , structure 3 , structure 4 and structure 5 respectively.
All these structures will be pairwise non-isomorphic.
In structure 1, type C and type A are used repeatedly.
The one point union is taken at vertex ' e ' on it. Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy A is used at $i^{\text {th }}$ copy if $\mathrm{i} \equiv 0(\bmod 2)$ for all $i=1,2, \mathrm{k}$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 2, type C and type B are used repeatedly .T
he one point union is taken at vertex ' a ' on it. Type C is used as $i^{\text {th }}$ copy if $i=1(\bmod 2)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, k$, in construction of $G^{(k)}$.
In structure 3, type C and type B are used repeatedly. The one point union is taken at vertex ' b ' on it.
Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 4, type C and type B are used repeatedly .
The one point union is taken at vertex ' c ' on it. Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy if $\mathrm{i} \equiv 0(\bmod 2)$ for all $\mathrm{i}=1,2, . \mathrm{k}$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 5, type E and type D are used repeatedly.
The one point union is taken at vertex ' d ' on it. Type E is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy D is used at $i^{\text {th }}$ copy if $\mathrm{i} \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $G^{(k)}$.

Volume - 03, Issue - 05, May 2018, PP - 50-54

The label number distribution for structure 1 is as follows: On vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(3+7 \mathrm{x}, 4+7 \mathrm{x})$ if kis of type $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2$..And if $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, .$. we have on vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(1+5 \mathrm{x}, 5 \mathrm{x})$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if kis of type $k=2 x+1, x=0,1,2$..
The label distribution for structure 2 , structure 3 and structure 4 is as follows: On vertices $v_{f}(0,1)=(3+5 x, 3+5 x)$ and on edges $e_{f}(0,1)=(3+7 x, 4+7 x)$ if kis of type $k=2 x+1, x=0,1,2$..And if $k=2 x, x=1,2, .$. we have on vertices $v_{f}(0,1)=(5 x, 5 x+1)$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if k is of type $k=2 x+1, x=0,1,2 .$.
The label distribution for structure 5 is as follows: On vertices $v_{f}(0,1)=(3+5 x, 3+5 x)$ and on edges $e_{f}(0,1)=(4+7 x, 3+7 x)$ if kis of type $k=2 x+1, x=0,1,2$..And if $k=2 x, x=1,2, .$. we have on vertices $v_{f}(0,1)=(5 x, 5 x+1)$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if k is of type $k=2 x+1, x=0,1,2$..

Case 2. P_{2} is attached at one of the two 3-degree vertices of S_{4}.

We can take one point union at vertices 'e', ' a ', ' b ', ' c ' or ' d ', see fig 4.13 , to produce structure 1 to structure 5 respectively. All these structures will be pairwise non-isomorphic.
In structure 1 , type C and type A are used repeatedly. The one point union is taken at vertex ' e ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy A is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 2, type C and type A are used repeatedly. The one point union is taken at vertex ' a ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 2)$ and copy A is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 3, type C and type B are used repeatedly. The one point union is taken at vertex ' b ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy $i f i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 4, type C and type B are used repeatedly. The one point union is taken at vertex ' c ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 5, type C and type D are used repeatedly. The one point union is taken at vertex ' d ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy D is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
The label number distribution for structure 1, structure 2 and structure 5 is as follows:On vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(3+7 \mathrm{x}, 4+7 \mathrm{x})$ if kis of type $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$. And if $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, .$. we have on vertices $v_{f}(0,1)=(1+5 x, 5 x)$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if kis of type $k=2 x+1, x=0,1,2$..

The label number distribution for structure 3 and structure 4 is as follows: On vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(3+7 \mathrm{x}, 4+7 \mathrm{x})$ if kis of type $\mathrm{k}=2 \mathrm{x}+1$, $\mathrm{x}=0,1,2$. And if $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, .$. we have on vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 5 \mathrm{x}+1)$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$ if kis of type $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2 .$.

Thus the graph is cordial. \#
4.3 Theorem.
$\mathrm{G}^{(\mathrm{k})}$ is cordial where $\mathrm{G}=\operatorname{tail}\left(\mathrm{s}_{4}, 2-\mathrm{P}_{2}\right)$
Proof: Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ as follows. It introduces four types of labeling units as given below. Type A and Type B are not cordial while Type C and type D have same label number but different distribution.

Volume - 03, Issue - 05, May 2018, PP - 50-54
We combine them suitably to obtain a labeled copy of $\mathrm{G}^{(\mathrm{k})}$.There are two cases depending on where the two copies of p_{2} are attached on S_{4}.

Case 1 : both p_{2} are attached at 2-degree vertex of S_{4}.

We take one point union on any of the vertices ' a ', ' b ', ' c ' or ' d '(see fig 4.18 above). In that case we get structure1,structure2, structure3 and structure 4 respectively. All these structures are pairwise non-isomorphic. In structure 1, type C and type A are used repeatedly. The one point union is taken at vertex ' a ' on it. Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy A is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 2 , type C and type A are used repeatedly. The one point union is taken at vertex ' b ' on it.Type C is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 2)$ and copy A is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 3, type C and type A are used repeatedly. The one point union is taken at vertex ' c ' on it.Type C is used as $\dot{i}^{\text {th }}$ copy if $\mathrm{i} \equiv 1(\bmod 4)$ and copy A is used at $\mathrm{i}^{\text {th }}$ copy $\mathrm{if} \mathrm{i} \equiv 0(\bmod 2)$ for all $\mathrm{i}=1,2, . \mathrm{k}$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 4, type D and type B are used repeatedly. The one point union is taken at vertex ' d ' on it.Type D is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$
The label number distribution is on vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(3+7 \mathrm{x}, 4+7 \mathrm{x})$ when $\mathrm{k}=$ $2 \mathrm{x}, \mathrm{x}=0,1,2$.. and when k is of type $\mathrm{k}=2 \mathrm{x}$, on vertices we have $\mathrm{v}_{\mathrm{f}}(0,1)=(5 \mathrm{x}, 1+5 \mathrm{x})$ and on edges $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$.

Case 2. Two P_{2} paths are attached at one of the two 3-degree vertices of S_{4}.

Fig 4.6 Tifl $\left(\mathrm{C}_{4}, \mathrm{P}_{2}\right)$

Case 1
Type A

Fig 4.7
$v_{f}(0,1)=(3,3), e_{f}(0,1)=(3$

$\mathrm{v}_{\mathrm{f}}\left(0,1\right.$ Tase 1 ype $\left.\mathrm{B}^{2}\right), \mathrm{e}_{f}(\mathrm{p}, 1)=(4$

$\mathrm{v}_{\mathrm{f}}(0,1)=(2,4), \mathrm{e}_{\mathrm{f}}(0,1)=(4$,
can take one point union at vertices 'e', , 'b', 'c' or 'd', see fig 4.6 , to produce structure 1 to structure 4 respectively. All these structures will be pairwise non-isomorphic.
In structure 1 , type A and type C are used repeatedly. The one point union is taken at vertex ' e ' on it.Type A is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy C is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.

Volume - 03, Issue - 05, May 2018, PP - 50-54
In structure 2, type A and typeB are used repeatedly. The one point union is taken at vertex ' b ' on it.Type A is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 2)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 3, type A and type B are used repeatedly. The one point union is taken at vertex 'd' on it.Type A is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy B is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
In structure 4, type A and type C are used repeatedly. The one point union is taken at vertex 'c' on it.Type A is used as $i^{\text {th }}$ copy if $i \equiv 1(\bmod 4)$ and copy C is used at $i^{\text {th }}$ copy if $i \equiv 0(\bmod 2)$ for all $i=1,2, . k$, in construction of $\mathrm{G}^{(\mathrm{k})}$.
The label distribution for structure 1 and structure 4 is as follows: On vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $e_{f}(0,1)=(3+7 x, 4+7 x)$ if kis of type $k=2 x+1, x=0,1,2$..And if $k=2 x, x=1,2, .$. we have on vertices $v_{f}(0,1)=(1+5 x, 5 x)$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if kis of type $k=2 x+1, x=0,1,2$.

The label distribution for structure 2 and structure 3 is as follows: On vertices $\mathrm{v}_{\mathrm{f}}(0,1)=(3+5 \mathrm{x}, 3+5 \mathrm{x})$ and on edges $e_{f}(0,1)=(3+7 x, 4+7 x)$ if kis of type $k=2 x+1, x=0,1,2$..And if $k=2 x, x=1,2, .$. we have on vertices $v_{f}(0,1)=(5 x, 5 x+1)$ and on edges $e_{f}(0,1)=(7 x, 7 x)$ if kis of type $k=2 x+1, x=0,1,2$..

Thus the graph is cordial. \#
Conclusions:We show that tail $\left(\mathrm{s}_{4}, \mathrm{P}_{2}\right), \mathrm{G}^{(\mathrm{k})}$ where $\mathrm{G}=\operatorname{tail}\left(\mathrm{s}_{4}, \mathrm{P}_{3}\right)$, tail $\left(\mathrm{s}_{4}, 2-\mathrm{P}_{2}\right)$
are cordial graphs.

References:

[1]. M. Andar, S. Boxwala, and N. Limaye, New families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
[2]. M. Andar, S. Boxwala, and N. Limaye, On the cordiality of the t-ply Pt(u,v), ArsCombin., 77 (2005) 245-259. [135]
[3]. BapatMukund ,Ph.D. thesis submitted to university of Mumbai.India 2004.
[4]. BapatMukund V. Some Path Unions Invariance Under Cordial labeling,accepted IJSAM feb. 2018 issue.
[5]. I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, ArsCombin., 23 (1987) 201-207.
[6]. Harary,Graph Theory,Narosa publishing ,New Delhi
[7]. Yilmaz,Cahit ,E-cordial graphs,Ars combina,46,251-256.
[8]. J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
[9]. D. WEST,Introduction to Graph Theory ,Pearson Education Asia.

