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Abstract: Coupled with the finite difference method, the radial basis function collocation method can be 

extended to solve the time-dependent problems. This paper presents a meshfree scheme for the direct 

approximation of the 2D coupled Burgers’ equations. This can be done by using the two different schemes in the 

sense of radial and non-radial basis functions. The time variable in the first radial scheme is treated equally to 

the normal space variables to construct a ’isotropic’ space-time radial basis function. The non-radial scheme 

constructed a sensible relationship between space variables and time variable. An advantage of this space-time 

meshfree scheme is that the solution of both time-dependent and time independent equations can be combined in 

a unified way. Numerical results show that the proposed semi-analytical meshfree schemes are accurate, 

easy-to-programm and efficient for the coupled Burgers’ equations. 
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1 Introduction 
 A large number of mathematical models in mathematical physics can be described by the Klein-Gordon 

equations. It has attracted much attention in studying the recurrence of initial states, solitons and condensed 

matter physics [1, 2]. 

For such time-dependent problems, it is very difficult to get the corresponding theoretical/analytical 

solutions. Thus one should consider numerical approximations to the Klein-Gordon equations. A variety of 

numerical methods have been proposed and compared for solving the Klein-Gordon equations [3]. Almost all 

these numerical methods are based on the other methods [4, 5]. 

To avoid the mesh generation, the radial-basis-function-based meshfree methods have fascinated many 

scholars’ attention [6, 7, 8, 9, 10, 11]. It should be pointed that the above-mentioned numerical method are all 

two-step methods, i.e., the finite difference method is used to discretize the time varaible and then another 

method can be used to find numerical solutions for time-independent problems. 

In this paper, we propose a space-time semi-analytical meshfree method, which is a one-step method, for 

the one-dimensional Klein-Gordon equations and two-dimensional coupled Burgers’ equations. For the 

time-dependent Klein-Gordon equations, two different schemes are proposed for the basis functions from radial 

and non-radial aspects. The time variable in the first radial scheme is treated equally as space variables which 

yields a ’isotropic’ space-time radial basis function. A realistic relationship between space variables and time 

variable is investigated by the non-radial scheme. Under such circumstances, the time variable and space 

variables can be treated simultaneously during the whole solution process and the Klein-Gordon equations can 

be solved in a direct way. 

 

2 Problem Description 
In this paper, we consider the general mathematical formulation of 2D coupled Burgers’ equations  
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with initial and boundary conditions:  

 ),(),,(=,0),(),,(=,0),( 21 yxyxgyxVyxgyxU   (3) 

 ),(),,,(=,0),(),,,(=),,( 43 yxtyxgyxVtyxgtyxU   (4) 

where Re  is a real constant known as the Reynolds number. 
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3 Formulation of the space-time radial and non-radial basis functions 
For traditional numerical techniques, Eqs. (1)-(3) can be solved by using the two-level finite difference 

approximations or integral transform methods. In order to overcome the two-level strategy, we propose direct 

meshless methods by using space-time radial and non-radial basis functions. 

As is known to all, the radial basis functions (RBFs) are ’isotropic’ for Euclidean spaces. For steady-state 

problems, the approximate solution can be written as a linear combination of RBFs with 2D or more higher 

dimensions. Take the famous Multiquadric (MQ) RBF as an example  

 
2)(1=)( jjMQ rr       (5) 

where PP jj XXr =  is the Euclidean distance between two points ),(= yxX  and ),(= jjj yxX , 

  is the RBF shape parameter. 

However, there is only one space variable x  for the one-dimensional Klein-Gordon equation, the 

traditional RBFs are unapplicable in the direct sense. For this reason, we propose a simple meshless method by 

combining the space variable x  and time variable t  from the perspective of radial and non-radial. More 

specifically, the interval ],[ ba  is evenly divided into segments firstly bxxxa n =<...<<= 10  with 

corresponding finess nabh )/(=  . The time variable is evenly chosen from the initial time 0=0t  to a 

final time Ttn =  as Tttt n =<...<<=0 10  with time-step nTt /= . Then the space-time radial basis 

function can be constructed as  

 
221=)( jjMQ rcr      (6) 

 PP jj PPr =  is the Euclidean distance between two points two points ),(= txP  and ),(= jjj txP . 

Besides, we can construct the space-time non-radial basis function which has the following expressions  

 
222 )()(1=),( jjjNMQ ttcxxPP     (7) 

where c  is a parameter which reflects a realistic relationship between space variable x  and time variable t . 

 

We note that the space-time non-radial basis function which is product of two positive definite 

functions on space dimension and time dimension is investigated in [?, ?]. For the MQ case, one have  

 .)(1)(1=),( 2222

jjjNMQ ttcxxcPP     (8) 

However, the corresponding numerical results is not well in dealing with the problems in this research. 

For two-dimensional cases, the space-time radial and non-radial basis functions can be easily obtained  

 
221=)( jjMQ rcr      (9) 

 
2222 )()()(1=),( jjjjNMQ ttcyyxxPP    (10) 

with PP jj PPr =  is the Euclidean distance between two points two points ),,(= tyxP  and 

),,(= jjjj tyxP . 

 

4 Implementation of the space-time simi-anlaytical meshfree method (SSMM) 
Here, we consider the initial boundary value problem Eqs. (1)-(3) to illustrate the direct meshless method 

(SSMM). Based on the definition of space-time radial and non-radial basis functions, Eqs. (1)-(3) can be solved 

directly in a one level approximation. The approximate solution of the function ),( txu  has the form  

 ).()(
1=

  jj

N

j

u       (11) 

with 
n

jj 1=}{  the unknown coefficients. 

 

To illustrate the space-time simi-anlaytical meshfree method, we choose collocation points on the whole 

physical domain which include IN  internal points I
N

iiii txP 1=)},(={ , tN  initial boundary points 
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1=)},(={  and bN  boundary points 
N

t
N

I
Niiii txP 1=)},(={  . Based on the traditional collocation 

approach, by substituting Eq. (11) into Eqs. (1)-(3), we have the NN   linear algebraic system  

 ,= fAX      (12) 

where A  is NN   known matrix, X  is 1N  vectors, f  is 1N  vectors. This can be solved by 

the backslash computation in MATLAB codes. From the above procedures, we can find that the implementation 

of the proposed space-time simi-anlaytical meshfree method is very simple. 

 

5 Numerical experiments 
 To compare with the previous literatures, we consider using the maximum error, absolute error and root 

mean square error (RMSE) [12, 13] defined as below:  

 ,|)()(|
1

=RMSE 2

1=

kk

t
N

kt

PuPu
N

    (13) 

where )( ku   is the analytical solution at test points t
N

kkP 1=}{  and )( ku   is the numerical solutions at the test 

points t
N

kkP 1=}{ . tN  is the number of test points on the physical domain. The shape parameter 1=c  is 

chosen for the first two one-dimensional Klein-Gordon equations and the shape parameter for the rest two 

two-dimensional coupled Burgers’ equations is chosen by prior numerical results. 
 

For simplicity, we denote the space-time radial basis function Eq. (5) and space-time non-radial basis 

function Eq. (6) as SSMM1 and SSMM2, respectively. 

We consider the 2D Burgers¡¯ equations, with the initial conditions yxyxu =,0),( , 

yxyxv =,0),(  and the exact solutions are as follows  
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Table  1: Comparison of numerical solutions with the exact solutions for u and v at 0.1=t  for Case 4.3.      

Test Point (0.1,0.1) (0.2,0.2) (0.3,0.3) (0.5,0.5) 

u-SSMM1 3.86E-05 4.39E-05 1.94E-05 6.95E-07 

u [14] 3.31E-06 6.62E-06 9.92E-06 1.65E-05 

v-SSMM1 3.55E-05 8.95E-05 2.82E-05 3.74E-06 

v [14] 1.05E-06 2.11E-06 3.16E-06 5.27E-06 

u-SSMM2 3.05E-05 1.71E-05 9.02E-05 1.57E-06 

v-SSMM2 8.69E-06 5.39E-05 9.95E-05 3.79E-06 

 

The computational domain has been taken as 0.5},0|),{(=  txyxD . The study compares the 

presented SSMM with the discrete ADM in [14], the problem is solved at 0.1=t  and 0.4=t  for uniform 

mesh 1/8== yx hh  and 1/9== yx hh , respectively. The uniform mesh 0.025== yx hh  used in [14] 

is smaller than the present SSMM. 

The numerical solutions for arbitrary Reynolds numbers are listed in Tables 5 and 6, respectively. From 

Table 5, we can see that the present SSMM performs better than the discrete ADM at 0.1=t  for test point 

(0.5,0.5)=),( yx . While the numerical results for the other test points are almost the same. From Table 6, it 

can be seen that the approximation solutions by SSMM perform better than the discrete ADM at a certain time 

t  for all test points. Therefore it is concluded that the SSMM is an accurate and efficient method to solve a 

nonlinear system of equations. From practical opinions, the numerical results may reduce with the increase of 

time t . Numerical results show that the SSMM is more stable than the discrete ADM with the increase of time 

t . 
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Table  2: Comparison of numerical solutions with the exact solutions for u and v at 0.4=t  for Case 4.3 

Test Point (0.1,0.1) (0.2,0.2) (0.3,0.3) (0.5,0.5) 

u-SSMM1 2.37E-06 3.85E-05 8.89E-05 6.61E-06 

u [14] 1.02E-04 2.04E-04 3.06E-04 5.10E-04 

v-SSMM1 3.73E-06 1.14E-04 1.47E-05 1.81E-04 

v [14] 3.55E-04 7.10E-04 1.06E-03 1.77E-03 

u-SSMM2 1.99E-05 2.00E-05 4.43E-04 7.22E-06 

v-SSMM2 3.26E-05 1.57E-06 1.93E-04 1.51E-06 

 

6 Conclusions 
 In this paper, a new space-time simi-anlaytical meshfree method is proposed for the one-dimensional 

Klein-Gordon equations and the two-dimensional coupled Burgers’ equations. Two schemes for the basis 

functions from radial and non-radial aspects. The first scheme is fulfilled by considering time variable as normal 

space variable to construct a ’isotropic’ space-time radial basis function. The other scheme considered a realistic 

relationship between space variable and time variable which is not radial. Both schemes for the proposed 

meshless method are simple, accurate, stable, easy-to-programm and efficient for the Klein-Gordon equations. 

More importantly, the proposed method can be used to nonlinear problems accompanied with iteration methods. 

The theory of our SSMM procedure can be directly applied to wave propagation, transient heat transfer and 

thermo-elastic problems with high dimensions. 
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